sábado, 04 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Descubriendo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 La Mejor Evidencia Observable de la Primera Generación de Estrellas del Universo fue captada por la NASA con sus ingenios tecnológicos

 

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcS6VCjINkOP1fHpNNHZPBbTpl6DBbZwr0XacjtDjHTeaQAFIfxKBw

 

 Utilizando el Very Large Telescope de ESO, un equipo de astrónomos ha descubierto la galaxia más brillante encontrada hasta ahora en el universo temprano, hallando además evidencias de que, acechando en su interior, hay ejemplares de la primera generación de estrellas. Estos objetos masivos, brillantes y puramente teóricos hasta ahora, fueron los creadores de los primeros elementos pesados de la historia, los elementos necesarios para forjar las estrellas que nos rodean hoy en día, de los planetas que las orbitan y de la vida tal y como la conocemos. La galaxia recién descubierta, apodada CR7, es tres veces más brillante que la galaxia distante más brillante conocida hasta ahora. El apodo de CR7 es la abreviatura de COSMOS Redshift 7, una medida de su ubicación en términos de tiempo cósmico. Fue inspirado por el gran futbolista portugués, Cristiano Ronaldo, conocido como CR7.

 

                                                     Estrellas de la Población III

 

 

Los astrónomos han teorizado durante mucho tiempo sobre la existencia de una primera generación de estrellas — conocida por los astrónomos como estrellas de población III — que nacieron del material primordial del Big Bang. Todos los elementos químicos más pesados (como oxígeno, nitrógeno, carbono y hierro, que son esenciales para la vida) se forjaron en el interior de las estrellas. Esto significa que las primeras estrellas debieron haberse formado a partir de los únicos elementos que existían antes de las estrellas: hidrógeno, helio y trazas de litio.

Estas estrellas de población III habrían sido enormes (varios cientos o incluso mil veces más masivas que el Sol ­— ardientes y efímeras —) y habrían acabado explotando como supernovas después de tan solo unos dos millones años. Pero hasta ahora la búsqueda de la prueba física de su existencia no había encontrado ninguna evidencia clara.

Impresión artística de CR7: la galaxia más brillante del universo temprano
Impresión artística de CR7: la galaxia más brillante del universo temprano. Image Credit: ESO

Un equipo dirigido por David Sobral, del Instituto de Astrofísica y Ciencias del Espacio, la Universidad de Lisboa (Portugal) y el Observatorio de Leiden (Países Bajos), ha utilizado el Very Large Telescope (VLT de ESO) para mirar hacia el universo antiguo, hacia un periodo conocido como reionización que tuvo lugar aproximadamente 800 millones de años después del Big Bang. En lugar de llevar a cabo un estudio profundo y limitado de un área pequeña del cielo, ampliaron su alcance para producir el sondeo más amplio de galaxias muy lejanas jamás elaborado.

Eso1524aArtist’s impression of CR7 the brightest galaxy in the early Universe.jpg

Este amplio estudio se hizo utilizando el VLT con ayuda del Observatorio W. M. Keck y del telescopio Subaru, así como del Telescopio Espacial Hubble de NASA/ESA.

Subaru mk summit light.jpg

El Telescopio Subaru

El equipo descubrió — y confirmó — una serie de galaxias muy jóvenes asombrosamente brillantes. Una de ellas, bautizada como CR7, era un objeto excepcionalmente raro, sin duda la galaxia más brillante nunca observada en esa etapa en el universo. Con el descubrimiento de CR7 y de otras galaxias brillantes, el estudio ya suponía un éxito, pero una nueva revisión proporcionó más noticias emocionantes.

Observing Platform VLT.jpg

El VLT se encuentra en el Observatorio Paranal sobre el centro Paranal en la ciudad de Taltal, una montaña de 2.635 metros localizada en el desierto de Atacama, al norte de Chile.

Los instrumentos X-shooter y SINFONI, instalados en el VLT, descubrieron en CR7 una potente emisión de helio ionizado pero — crucial y sorprendentemente — ninguna señal de elementos más pesados en una brillante zona de la galaxia. Esto significó que el equipo había descubierto la primera evidencia válida de la existencia de cúmulos de estrellas de población III que habían ionizado el gas dentro de una galaxia en el universo temprano.

Una galaxia, bautizada en honor a Cristiano Ronaldo

“El descubrimiento desafiaba nuestras expectativas desde el principio”, afirma David Sobral, “ya que no esperábamos encontrar una galaxia tan brillante. Entonces, al descubrir la naturaleza de CR7 paso a paso, comprendimos que no sólo habíamos descubierto la galaxia lejana más luminosa, sino que también nos dimos cuenta de que cumplía todas y cada una de las características esperadas de estrellas de población III. Esas estrellas fueron las que formaron los primeros átomos pesados que, en última instancia, nos ha permitido estar aquí. Realmente no hay nada más emocionante que esto”.

Dentro de CR7 se encontraron cúmulos de estrellas más azules y un poco más rojas, indicando que la formación de estrellas de población III había tenido lugar por oleadas, tal y como se había predicho. Lo que el equipo observó de forma directa fue la última oleada de estrellas de población III, sugiriendo que tales estrellas deben ser más fáciles de encontrar de lo que se pensaba previamente: residen entre estrellas normales, en las galaxias más brillantes, no sólo en las galaxias más tempranas, más pequeñas y más tenues, que son tan débiles que son extremadamente difíciles de estudiar.

Jorryt Matthee, segundo autor del artículo, concluyó: “siempre me he preguntado de dónde venimos. Incluso siendo niño quería saber de dónde provienen los elementos: el calcio de mis huesos, el carbono de mis músculos, el hierro de mi sangre. Descubrí que estos se formaron primero en los inicios del Universo, por la primera generación de estrellas. Con este notable descubrimiento estamos empezando a ver estos objetos por primera vez”.

Está previsto llevar a cabo observaciones con el VLT, ALMA y el Telescopio Espacial Hubble de la NASA/ESA para confirmar, más allá de toda duda, que lo que se ha observado son estrellas de población III y buscar e identificar otros ejemplos.

Bueno, Cristiano me cae bien, es un luchador y, lo que tiene, nadie se lo regaló. Nadie sabe mejor que él los muchos momentos de soledad y amargura que pasó a temprana edad, lejos de la familia, entre extraños y ganándose día a día el lugar que finalmente conquistó. Es un ejemplo de tenacidad…y tiene bien ganado todo lo que tiene. Sin embargo, no hizo nada por tener el honor de que una galaxia lleve su nombre.

Esto último es mi opinión personal que queda fuera del reportaje.

¿Había algo antes del Big Bang?

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (37)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC- Ciencia

http://3.bp.blogspot.com/-EgYu203xVYQ/TpZgFOU8FfI/AAAAAAAAAJU/q5xInJzoB-4/s1600/penrose-21.png

Según la teoría de la Cosmología Cíclica Conforme, de Sir Roger Penrose, el Universo vive un ciclo continuo e infinito de «creaciones»

” A la izquierda: Imagen en el óptico de la nebulosa del Cangrejo tomada por el telescopio Hubble, a la que se han asignado colores falsos para resaltar los diferentes elementos químicos que la componen. La nebulosa abarca una distancia de unos 6 años luz. En el centro: Imagen del objeto en rayos XA la derecha: Recreación artística de la estrella de neutrones central, de apenas unos kilómetros de diámetro, con su campo magnético. El eje de rotación del púlsar queda representado por la línea vertical de color verde. Las franjas azules, paralelas al eje que forman los polos magnéticos del astro, simbolizan los haces de radiación emitidos por el objeto. Debido a la rápida rotación de la estrella, esos haces se orientan hacia la Tierra una vez cada 33 milisegundos. Cuando eso ocurre, desde nuestro planeta se observa un breve pulso de radiación electromagnética muy energética”
La Nebulosa se formó trás una explosión de Supernova, claro que,el término explosión,si está referido al Big Bang, se queda muy corto para describir todo lo que allí,se supone que pasó.
 NASA, ESA, J. Hester, A. Loll (ASU)
Héctor Socas, investigador del Instituto de Astrofísica de Canarias (IAC). Créditos: ACTPress.

 

POR HÉCTOR SOCAS NAVARRO/Investigador en el Instituto Astrofísico de Canarias (IAC)

 

Sir Roger Penrose es una leyenda viva de la Física. Durante el festival Starmus tuve el placer de escucharle explicando su controvertida teoría cosmológica. Su exposición fue tan elocuente, convincente e incluso divertida, que me causó una profunda impresión. A ver si en este artículo consigo explicarla de forma mínimamente coherente.

Estamos bastante seguros de que el Universo entero comenzó con lo que se llama el Big Bang (la «gran explosión») hace la friolera de 13,700 millones de años. En realidad, lo de la explosión no es una muy buena metáfora. Este nombre lo acuñó despectivamente el astrofísico Fred Hoyle durante la retransmisión de un programa de radio de la BBC en 1949. Hoyle se burlaba con él de la absurda teoría que había propuesto el sacerdote (además de físico y matemático) Georges Lemaître. El propio Einstein al principio tampoco creía en las ideas de Lemaître. El prejuicio de la época era que el Universo debía ser algo estático e inmutable. Pero las matemáticas de Lemaître eran impepinables.

Resultado de imagen de Lemaitre Y la expansión del Universo

Georges Lemaître y Albert Einstein que, tras muchas discuosiones…

Su solución de las ecuaciones de Einstein implicaba que el Universo debía estar o bienexpandiéndose o bien colapsando, cayendo sobre sí mismo como un edificio en demolición. Visto con perspectiva histórica, debe dar mucha rabia eso de que alguien coja las ecuaciones que son el trabajo de tu vida y las resuelva magistralmente para llegar a una conclusión que aborreces. Las discusiones entre Einstein y Lemaître, que llevaron al primero a proponer la existencia de una «constante cosmológica», merecerían un artículo aparte. Por lo pronto, baste decir que, como buen científico, Einstein acabó aceptando la evidencia, tanto teórica como empírica, que comenzaba a acumularse. Pese a sus prejuicios iniciales, terminó abrazando la idea de que, efectivamente, el Universo se estaba expandiendo.

La singularidad original

Se sabe que el universo tuvo un origen. Pero ¿de dónde provino? ¿Qué se originó exactamente? Sabemos que comenzó expandiéndose rápidamente, y que sus pequeñas partículas terminaron convirtiéndose en innumerables e inmensas galaxias. ¿Qué pasó antes? ¿Cómo eran las leyes físicas cuando todo empezó?

Imagen: geralt. Fuente: Pixabay.

La historia sería más o menos así: Al principio de los tiempos, todo el Universo estaba concentrado en una singularidad, un punto de densidad infinita que repentinamente estalló en ese instante inicial, saltando toda la materia, energía y espacio despedidos en todas direcciones. A medida que pasa el tiempo, la Física nos dice que las galaxias van a sentir el tirón gravitatorio unas de otras, y esto debería hacer que poco a poco se vayan frenando. Cuánto se van a frenar dependerá de cuánta masa haya en el Universo. Si hay mucha, la gravedad terminará por dominar, la expansión se detendrá y el Universo volverá a caer sobre sí mismo.

NASA / WMAP Science Team

Si hay poca, la atracción será incapaz de frenar la expansión y el Universo continuará expandiéndose por toda la eternidad, aunque a menor velocidad. La distinción es trascendental, con implicaciones hasta en el plano espiritual. Porque un Universo que vuelve a colapsar se presta a la perspectiva del ciclo infinito de big bang-big crunch, el ciclo continuo y eterno de creación y destrucción. Mientras que la otra posibilidad nos lleva a una insulsa muerte final de toda la existencia, más que nada por aburrimiento.

La sorpresa de la densidad crítica

 

Resultado de imagen de La Densidad Crítica del Universo

De la Densidad Crítica, o lo que los Cosmólogos llaman el Omega Negro (la materia existente en el Universo), dependerá su final. Tres podrían ser las clases de Universo en el que vivimos.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

La cantidad de masa (o, hablando con más precisión, de energía) que se necesita para pasar de un comportamiento a otro se llama «densidad crítica». No hace mucho, cuando yo estudiaba, sin ir más lejos (y créanme que tampoco hace tanto de eso), nos preguntábamos si en el Universo había más o menos densidad que la crítica. Parecía que no, que era muy pequeña, que no sería suficiente toda la masa para volver a cerrar el ciclo. Pero claro, en aquella época no se conocían la materia y la energía oscura. Si tenemos en cuenta estos factores, nos encontramos con uno de los grandes misterios de la cosmología moderna: ¡Resulta que tiene exactamente la densidad crítica!

La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang
La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big
Bang- WIKIPEDIA

La revelación de que la densidad del Universo es exactamente la crítica (con tanta precisión como somos capaces de medir), sacudió el mundo de la Física. Y es que, aunque sea en el plano subconsciente, se hace difícil no evocar la imagen de un creador para explicar tal coincidencia cósmica. La situación de crisis existencial se resolvió poco después, para alivio de muchos, con la llegada de la teoría de la inflación.

Por ponerlo en términos muy simples, esta teoría nos dice que durante la primera fracción de segundo (técnicamente, desde los 10-36 hasta los 10-32 segundos), el Universo sufrió una expansión tan brutalmente violenta, que el término «explosión» se queda muy corto para describir lo que ocurrió. La expansión en esa época fue acelerada exponencialmente, que es una forma que hay en Física de decir enormemente rápida.

Los cosmólogos suelen decir que todo lo que existe pasó de tener el tamaño de un átomo al de un melón. Por alguna razón se suele usar el melón como medida de referencia. Podrían decir que medía 30 centímetros, que era como un balón de baloncesto o como un florero grande. Pero no, parece que lo del melón lleva camino de convertirse en la unidad estándar de volumen cósmico, algo así como el campo de fútbol lo es hoy en día para medir áreas de monte quemado.

Archivo:Bicep2.jpg

La cuestión es que a este disparatado crecimiento del espacio, infinitamente más rápido que la luz, se le llama inflación. Es un poco contraintuitivo porque, en lenguaje cotidiano, el verbo inflar nos suena mucho más suave y benigno que explotar. Es bien conocido que los físicos no son muy buenos para poner nombres a las cosas. No entendemos bien cómo y por qué ocurrió la inflación salvo que parece estar relacionado con lo que se llama «gran unificación», la época en la que las tres fuerzas fundamentales de la naturaleza eran una, grande y única.

El Universo no se frena

El otro gran descubrimiento que ha tenido lugar desde los tiempos de Einstein es otro hallazgo reciente que también ha causado cierta zozobra existencial. Discutíamos antes las dos posibilidades sobre hasta qué punto sería la gravedad capaz de frenar la expansión del Universo, creando un ciclo continuo de explosión-colapso (Big Bang-Big Crunch) o bien una expansión que se iría ralentizando eternamente pero sin llegar nunca a detenerse del todo. Pues bien, hoy en día sabemos que no va a ser ni lo uno ni lo otro. Resulta que el Universo no se está frenando. No tiene visos de querer volver a colapsar pero tampoco está ralentizando su marcha.

Antes al contrario, las observaciones nos muestran que desde hace 5,000 millones de años (un tercio de su vida), el Universo ha dejado de frenarse y ¡ha comenzado a acelerar! Este resultado fue obtenido por dos grupos independientemente y ambos recibieron el Premio Nobel en 2011. Fue tan sorprendente que ninguno de los dos grupos se atrevió a publicarlo hasta que se enteraron de los resultados del otro. Para explicar el fenómeno, los teóricos han tenido que postular la existencia de una «energía oscura», que sería omnipresente en todo el espacio vacío.

El ciclo continuo de Penrose

Resultado de imagen de Universo Cíclico

Hasta aquí hemos explicado la cosmología moderna canónica, la visión aceptada mayoritariamente por los expertos en el tema. ¿Qué es, entonces, lo que añade Penrose? Pues, según su teoría, estas dos revelaciones, la inflación y la expansión acelerada del Universo, están íntimamente relacionadas. De hecho, serían la misma cosa. Para Penrose, el Universo vive un ciclo continuo e infinito de «creaciones», pero no en el modelo tradicional de explosión-colapso.

Una fotografía de Roger Penrose, tomada en 2005
Una fotografía de Roger Penrose, tomada en 2005- Festival della Scienza

En su lugar, Penrose postula que cada uno de los ciclos (que él llama eones) acaba con una fase de expansión acelerada que se convierte en la inflación del eón siguiente. Lo de Penrose no es una ocurrencia, es una teoría. Esto significa que ha resuelto las ecuaciones de la relatividad general y los números cuadran salvo por un factor de escala. Quiere decirse que las escalas del nuevo universo son mucho mayores, tanto en el espacio como en el tiempo.

De Universo a melón

Resultado de imagen de Un nuevo Universo ciclico después del final

Así, todo nuestro Universo en expansión acelerada, está camino de convertirse en lo que sería un melón del Universo siguiente. Y los miles de millones de años que dura esta expansión serían la breve fracción de segundo en aquel nuevo Universo. Quizás en un futuro increíblemente distante, habrá criaturas inconcebiblemente grandes y lentas en el siguiente eón, investigando esta época en la que vivimos hoy en día, a la que quizás den el absurdo nombre de inflación y quizás la consideren el origen de su universo. Una implicación particularmente profunda de todo esto es que, de ser cierto, estaríamos ahora mismo viviendo un nuevo big bang que comenzó hace 5,000 millones de años y lo estaríamos viendo transcurrir a cámara súper lenta.

Sir Roger Penrose, sustentador de esta teoría, en el Festival della Scienza, Génova, 2011.

Quiero resaltar que esta teoría, llamada Cosmología Cíclica Conforme, no es la aceptada por la mayoría de los cosmólogos. Sin embargo, no hay nada incorrecto o erróneo en ella, que sepamos. Penrose es uno de los mayores expertos mundiales en la física de la relatividad general y la cosmología. Su teoría cumple con la física conocida y esto sí que es un mérito que le concede la comunidad. Al igual que hizo Lemaître hace un siglo, ha encontrado una solución matemática correcta a las ecuaciones de la Física que conocemos, pero es una solución que aborrecen sus colegas por razones más filosóficas que científicas.

Resultado de imagen de Ondas gravitacionales

Un aspecto particularmente fascinante es que, como toda buena teoría, la naturaleza cuantitativa de la cosmología de Penrose le permite hacer predicciones. Las ecuaciones indican que los eones no son completamente independientes y algo de información se puede transmitir de uno a otro. En particular, las ondas gravitacionales (ésas que recientemente detectó el experimento LIGO) creadas por catástrofes cósmicas en el eón anterior podrían atravesar la época de la inflación y llegar hasta nuestros días. Estas ondas producirían patrones de anillos concéntricos en el fondo cósmico de microondas. Ni que decir tiene que muchos investigadores están ya manos a la obra buscando esos anillos. Si se encontraran, sería la primera observación de algo que ocurrió antes del Big Bang.

Héctor Socas Navarro es investigador del Instituto de Astrofísica de Canarias (IAC) y divulgador en «Coffe Break». El autor agradece al Dr Jose Alberto Rubiño por su lectura crítica y comentarios para mejorar este artículo.

Cosas curiosas

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTRONOMÍA

Juega a comparar el tamaño de planetas, estrellas y agujeros negros

¿Es más grande la Luna o Marte? ¿Mercurio o la Tierra?

 

Reportaje de Prensa:

Explorar el cielo es un buen entretenimiento para las noches de verano. Basta con un lugar con poca contaminación lumínica, un telescopio competente y un cielo despejado. A Thomas Tortorini, un desarrollador web francés de 28 años, le encanta contemplar el cosmos. Ha creado una página web en la que se puede comparar el tamaño de algunos de esos cuerpos celestes. Por ejemplo, ¿cómo es Marte en comparación con Venus?

Pincha en la imagen para acceder a la comparación de estos dos planteas

“Creo que es una forma pedagógica con la que comprender los tamaños que se manejan en el espacio. A la gente que le gusta la astronomía le encanta este tipo de herramientas”, dice a Verne por mensaje privado Tortorini. Su web se coló en la portada del agregador de noticias Menéame a principios de agosto. Lo más cercano es comparar la Tierra con otros planetas o estrellas, para ser conscientes del lugar tan pequeño que ocupamos en el univernos. A continuación van varias pruebas. Pincha en las imágenes para acceder a cada comparación en la web, navegable tanto en ordenador como en móviles iOS y Android.

Tierra y Marte
Tierra y Neptuno

Tierra y Sol

A la hora de realizar las comparaciones, las que más problemas le han dado son aquellas en las que hay agujeros negros. “No tienen un radio o un diámetro específico, pero podemos usar el Radio de Schwarzschild para compararlos con otros astros”, dice Tortorini. Como explicaba el astrofísico Antxon Alberdi en EL PAÍS, el radio de Schwarzschild “está asociado con el radio aparente del horizonte de sucesos y que se toma como unidad de medida. Su valor depende de la masa del agujero negro”.

En la web de Tortorini, que se llama como su perfil en Twitter -Mr21-, se pueden comparar todos los planetas del sistema solar y varios satélites de algunos de esos planetas. También hay varias estrellas y algunos exoplanetas, aquellos que orbitan en estrellas diferentes al Sol. Las comparaciones con la Luna también son llamativas.

La Luna y Mercurio

La Luna y Saturno

La Luna y Europa (satélite de Júpiter)

Pincha en este enlace para jugar a comparar estrellas, agujeros negros y planetas.

Queremos decubrir el Universo… Pero… a medias

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La misteriosa energía oscura
                                                ¡La Energía oscura! ¿Dónde?
Reportaje de Prensa: El País

“Aquí descubrimos el 70% del universo”

Un telescopio chileno confirma que la misteriosa energía oscura compone la mayor parte del cosmos

 

Cerro Tololo (Chile)
El Observatorio Interamericano del Cerro Tololo en Chile. Luis Manuel Rivas

“Mucha gente me pregunta: pero si no puedes verlo, ¿cómo lo estudias? Y yo respondo: ¿Has visto el viento? ¿Realmente has visto el viento? No. Has visto el viento mover las hojas o el polvo”, reflexiona el astrónomo estadounidense Chris Smith. Hace dos décadas, sin ver nada de nada, su equipo descubrió prácticamente todo. “Con este telescopio descubrimos el 70% del universo”, resume Smith. El 70% del universo, que se dice pronto.

El astrónomo habla desde el telescopio Víctor Manuel Blanco, una mole de color blanco situada en una montaña de 2.200 metros, a 80 kilómetros de la ciudad de La Serena, en el norte de Chile. Smith, nacido en Alabama en 1964, mira a su alrededor. Ve una pelota de baloncesto, con la que los astrónomos se entretienen cuando está nublado y no pueden escrutar el cielo. También dirige su mirada a las paredes. Y a las pantallas de control. Y al techo. Se mira sus propias manos. “El tipo de materia de la que estamos hechos representa solo el 4% del universo”, subraya.

 

 

 

Resultado de imagen de La materia bariónica
Las galaxias y los seres vivos, todos hechos de Quarks y Leptones, es decir, materia bariónica.

El telescopio Blanco posee una de las cámaras digitales más potentes del mundo, de 570 megapíxeles y ocho toneladas

Smith dirige el Observatorio Interamericano del Cerro Tololo, el complejo en el que se encuentra el telescopio Blanco. En 1998, sus astrónomos hicieron un descubrimiento mayúsculo. Observaron que las galaxias más distantes se estaban alejando de nosotros. En realidad, que todas las galaxias se alejaban unas de otras, cada vez más rápido.

 

 

Imagen relacionada

Lo que esperaban ver era justamente lo contrario. Tras la gran explosión conocida como el Big Bang, hace unos 14.000 millones de años, empezó una gran expansión del universo, formándose por el camino todo lo que conocemos hoy. La lógica decía que esa expansión debería estar frenándose, por la fuerza de la gravedad, la misma que devuelve un balón de baloncesto a la mano que lo ha lanzado hacia arriba. “Pero encontramos algo raro: la expansión del universo era cada vez más rápida”, recuerda Smith. Como si se lanzara un balón al aire y acabara saliendo del planeta Tierra cada vez más rápido.

El hallazgo significaba que, en los confines del espacio, había algo que tiraba del universo hacia el exterior. Los cosmólogos echaron cuentas y calcularon que ese algo, bautizado energía oscura, representa el 70% del universo. El restante 26% sería materia oscura, otro enigma para la ciencia. Los líderes de la investigación —Saul Perlmutter, Adam Riess y Brian Schmidt— ganaron el premio Nobel de Física de 2011 por descubrir la expansión acelerada del universo.

El telescopio Blanco, en el Observatorio Interamericano del Cerro Tololo (Chile). Luis Manuel Rivas

“Ahora estamos intentando entender qué es la energía oscura. Cuando un astrónomo habla de algo oscuro, como materia oscura o energía oscura, quiere decir que no sabe qué es”, bromea Smith, en un correcto español con acento chileno.

El equipo del astrónomo estadounidense se encuentra ahora enfrascado en el Mapeado de la Energía Oscura, un proyecto de 400 científicos en siete países para identificar la posición de cientos de millones de galaxias y revelar la naturaleza de la enigmática energía oscura. Smith muestra el corazón de esa búsqueda: una de las cámaras digitales más potentes del mundo, de 570 megapíxeles, montada en el telescopio Blanco. “Es una cámara digital que pesa ocho toneladas y cuesta 50 millones de dólares”, describe el investigador con una sonrisa.

 

 

 

Resultado de imagen de El destino del Universo es frío
Si la Densidad Crítica del Universo es la que creemos que es, su final será muy frío. Se expandirápara siempre.

“El destino del universo es frío. Las galaxias seguirán volando, alejándose las unas de la otras”, explica el astrónomo Chris Smith

El proyecto, concebido para el periodo 2013-2018, empieza a ofrecer resultados. El pasado agosto, los científicos presentaron la medida más precisa jamás realizada de la estructura a gran escala del universo actual. Los resultados apoyan la teoría de que la materia que conocemos, por sí sola, es incapaz de formar las galaxias y las estrellas. La gravedad de la misteriosa materia oscura, invisible, sería necesaria para formar estructuras en el universo. Y los primeros datos también avalan la hipótesis de que la energía oscura le está echando un pulso a esta gravedad, empujando al universo hacia el exterior.

 

 

Imagen relacionada

 

 

“Es emocionante”, declaró el astrofísico Enrique Gaztañaga al presentar los resultados. “Pero todavía no hemos encontrado una pista definitiva de por qué el universo se está acelerando”. Gaztañaga es investigador del Instituto de Ciencias del Espacio de Barcelona, una de las instituciones españolas que participa en el proyecto.

La cámara del telescopio chileno es capaz de tomar imágenes de galaxias situadas a 8.000 millones de años luz de la Tierra. El mapa elaborado con sus datos cubre ya una trigésima parte de todo el cielo, pero el objetivo es que abarque una octava parte. De momento, al confirmar la expansión acelerada del universo, el proyecto ha puesto una ración de angustia existencial sobre la mesa. “El destino del universo es frío. Las galaxias seguirán volando, alejándose las unas de la otras. Y, al final, desde nuestra galaxia no se verán las estrellas de las otras galaxias, porque estarán demasiado lejos”, pronostica Smith. “Será un universo realmente oscuro”.

 

 

Resultado de imagen de El final de nuestro Universo ¿cómo será?

 

 

“El universo terminará en una nada fría y oscura”

 

 

La astrofísica de la Universidad de Edimburgo (Reino Unido) trata de averiguar de qué está hecho el 95% del universo que aún desconocemos

Catherine Heymans, física, y especialista en materia oscura en la Fundación BBVA, en Madrid
Catherine Heymans, física, y especialista en materia oscura en la Fundación BBVA, en Madrid.

La astrónoma Catherine Heymans imagina un final desolador para el cosmos. Desde hace 20 años, se sabe que el universo se expande cada vez más rápido impulsado por una misteriosa energía oscura. “Aunque las galaxias permanecerán unidas, porque la gravedad es demasiado fuerte, las estrellas agotarán su combustible y se apagarán lentamente y todo terminará en una nada fría y oscura”. Justo después de acabar esta descripción trágica del universo conocido parece apenada durante medio segundo antes de soltar una risotada.

Heymans, catedrática de Astrofísica de la Universidad de Edimburgo, se enfrenta a los misterios del cosmos con emoción y humor. Lidera el proyecto KIDs (Dilo-Degree-Survey) uno de los principales proyectos del mundo diseñados para estudiar la materia y la energía oscuras, dos elementos desconocidos que componen el 95% del universo. Han rastreado 15 millones de galaxias en busca de información que ayude a crear una nueva teoría gravitatoria que supere las de Isaac Newton o Albert Einstein, muy útiles para explicar el universo visible que solo es el 5% del total.

La semana pasada, Heymans se acercó a Madrid para hablar sobre El lado oscuro del universo dentro del ciclo de conferencias de astrofísica y cosmología de la Fundación BBVA.

Deberíamos haber encontrado ya la partícula que compone la materia oscura en los aceleradores del CERN

 

Pregunta. Su trabajo consiste en ir más allá del modelo estándar de física que explica muy bien el comportamiento de la materia visible, pero ignora qué es esa materia oscura que tiene efectos en cómo se mueven las galaxias, y la energía oscura que hace que el universo se expanda cada vez más rápido. ¿Qué sabemos de esos dos componentes oscuros del universo?

Respuesta. Conocemos la materia oscura desde hace más tiempo que la energía oscura y hemos tenido más tiempo para investigarla y descartar teorías. Ahora estamos llegando al punto donde si nuestras mejores teorías sobre lo que es la materia oscura fuesen ciertas, deberíamos haber encontrado ya la partícula que compone la materia oscura en el CERN, debería haber sido detectada ya en uno de los aceleradores. Pero no ha sido así. Eso sugiere que nuestros modelos de la materia oscura no son suficientes y necesitamos teorías más complejas.

La energía oscura por otro lado es un mundo de misterio completamente nuevo y excitante. La energía oscura es algo que conocemos desde hace algo menos de veinte años. Ahora estamos acumulando datos con diferentes formas de detectarla para tratar de descubrir su origen.

Hay gente que está tratando de unir las dos cosas, encontrar una teoría que las pueda explicar a la vez. Pero hay todo un zoológico de teorías diferentes tratando de explicar sus componentes.

P. Con lo que sabemos ahora sobre la materia oscura, ¿cree que seremos capaces de detectarla pronto?

R. El CERN ya ha realizado obras de mejora desde que encontraron el bosón de Higgs y van a hacer una más en breve. Esperaban encontrar partículas de materia oscura con la mejora actual y no lo han logrado. Quizá con la siguiente lo consigan, pero ya han descartado los modelos más simples que tratan de explicar la materia oscura y se están empezando a preocupar porque habitualmente los modelos más simples suelen ser los correctos.

P. ¿Será necesaria una nueva teoría física como la de la Relatividad de Einstein para comprender la materia y la energía oscuras?

Resultado de imagen de La Fuerza de Gravedad está en todo el UNiverso

 

Nuestras teorías sobre la gravedad funcionan muy bien, pero en una parte diminuta de nuestro universo

 

R. La Relatividad General es una de las teorías mejor comprobadas. Explica muy bien cómo giran los planetas alrededor del sol o cómo se curva la luz que llega desde las estrellas. Pero solo trata de una parte diminuta de nuestro universo en una región muy densa de nuestra galaxia. ¿Quién puede decir si la gravedad funcionaría igual a una escala mayor? Nunca se ha puesto a prueba.

Lo que estamos haciendo ahora es llevar a cabo nuevos mapas para probar el funcionamiento de la gravedad a gran escala en nuestro universo. Podría ser que la gravedad funciona diferente en un lugar muy denso con gran cantidad de materia como nuestra galaxia que en otros lugares. Einstein dijo que la gravedad curva el espacio y el tiempo del mismo modo, que no había diferencia entre el espacio y el tiempo. Sin embargo, sabemos que es diferente. El tiempo solo se mueve en una dirección, pero puedo saltar en cualquier dirección en el espacio. Quizá la gravedad funciona diferente en el espacio y el tiempo. Estas son las preguntas que estamos haciendo. Estamos en una etapa en la que no entendemos lo que vemos, así que tenemos que cuestionar el núcleo de nuestra comprensión de la física para tratar de entender lo que vemos.

P. ¿Están buscando algún tipo de observación específica?

Resultado de imagen de La lente gravitacional

R. La técnica de la que he sido pionera durante mi carrera es el efecto de lente gravitacional. La idea es que miras a galaxias en el universo muy lejano, y vemos que hay cúmulos de materia oscura en medio. Cuando la luz de estas galaxias viaja hasta el observador se curva por los efectos de la gravedad. Lo que hacemos es tomar imágenes de millones de galaxias en el universo lejano y luego estudiamos cómo se ha curvado y distorsionado la luz que llega hasta nosotros. Eso nos permite hacer un mapa de toda la materia oscura entre nosotros y el universo lejano.

Las galaxias viven en el interior de la materia oscura y se están moviendo. Cuanta más materia oscura hay, más rápido se mueve la galaxia. Esa es otra forma de medir la gravedad. Lo que hacemos es combinar esas dos medidas, el de la lente gravitacional y el movimiento de las galaxias que nos permite medir directamente la gravedad en grandes escalas, tanto en el espacio como en el tiempo. Eso nos permite ver si la gravedad está evolucionando con el tiempo y si afecta de manera distinta al espacio y al tiempo.

 

La explicación más simple es que esta energía extra procede del vacío y surge a partir de la aparición de partículas virtuales

España está involucrada en un proyecto llamado Euclid. Es un gran proyecto europeo que consiste en un telescopio espacial que se lanzará en 2020. Va a hacer una exploración de todo el cielo. Con esos datos vamos a poder ver cómo la gravedad está curvando el espacio-tiempo y cómo eso cambia con el tiempo, y esperamos que nos permita comprender el origen de esta materia oscura y probar estas teorías que pueden ayudar a explicar la materia oscura y la energía oscura. Necesitamos más datos para confrontar la diversidad de teorías que tenemos.

P. Si tuviese que elegir una teoría sobre lo que es la energía oscura, ¿cuál sería?

Imagen relacionada

               ¿Energía de vacío? El vacío no existe, siempre hay

R. La explicación más simple es que esta energía extra procede del vacío. Hay grandes regiones de nuestro universo en las que no hay absolutamente nada, no hay gas, ni materia oscura, nada de nada. Pero la física cuántica nos dice que puedes tener partículas virtuales que pueden surgir y desaparecer, como si apareciese en el espacio por arte de magia. Parece una locura, pero es un fenómeno que hemos medido en laboratorios. Tienes un vacío y a través de fluctuaciones cuánticas se crean partículas en él. Si estas partículas virtuales aparecen, le dan energía al sistema, algo que puede causar una expansión que crea más vacío y más oportunidades para que estas partículas aparezcan. Es como que tienes esta máquina de movimiento perpetuo porque cuanto más rápido se expande el universo, más vacío se genera y más oportunidades se crean para que existan estas partículas virtuales que acaban produciendo más energía.

Esa es la teoría más simple. Es muy bonita y tiene base en nuestra comprensión de la física cuántica, pero el problema es que si calculas cuánta energía debería crear este mecanismo, nuestro universo no existiría porque se habría expandido hasta su desaparición hace tiempo. La energía oscura que medimos y causa esta aceleración es en realidad muy pequeña, un millón de veces más pequeña de lo que cabría esperar.

A la mayoría de los astrónomos les gusta esta teoría y piensan que es la mejor para explicar la energía oscura, pero de alguna manera ignoran el hecho de que estos números son incorrectos. La gente cree que cuando tengamos mejores medidas, se verá que estas teorías son las mejores para explicar nuestras observaciones.

Resultado de imagen de Energía de vacío

 

Estamos aquí porque en nuestro universo la energía oscura es baja y las galaxias y planetas se pueden formar, puede haber planetas y la vida puede existir.

 

Otra explicación es la que tiene en cuenta la existencia de múltiples universos. En el universo temprano tenemos el Big Bang. Nuestras mejores teorías nos dicen que el universo experimentó entonces un rápido periodo de inflación. Nuestro entendimiento fundamental de la física puede explicar esa inflación, pero es muy difícil detenerlo.

Muchas teorías sobre la inflación predicen que no se creará un solo universo sino muchos. Eso sugiere que no somos el único universo sino que hay otros. Hay una teoría según la cual cada vez que se crea un universo hay una nueva configuración de las constantes fundamentales que guían nuestro entendimiento de la física. La gravedad nos pega al suelo, pero en otro universo podría ser mucho más fuerte, que tengamos distintas constantes en distintos universos. Y podría ser que este universo particular tiene una energía oscura muy extraña, y en estos múltiples universos la energía oscura existe, pero con diferente fuerza. La razón por la que estamos aquí es porque estamos en un universo en el que la energía oscura es baja y las estrellas y las galaxias se pueden formar y los planetas se pueden formar y la vida puede existir. Vivimos en un universo que es adecuado para la vida y eso podría ser una explicación por la que la energía oscura es tan débil. No me gusta esa teoría porque es difícil de poner a prueba, pero es una solución posible al problema. También aborda otras cuestiones como que muchas de las otras constantes fundamentales que explican nuestro universo son muy apropiadas para la vida. Si cambias estos parámetros aunque sea de una forma muy pequeña, las estrellas no se formarían, el ADN no se formaría.

P. ¿Cree que las leyes de la física son arbitrarias, que podrían ser distintas en cada uno de esos universos?

R. Las leyes serían algo estable, pero las constantes variarían. La gravedad puede ser más fuerte o más débil en otros universos. Las leyes fundamentales de la física están bien ancladas a la lógica, pero lo que no se comprende es por qué tienen la fuerza que tienen. Pero hay muchos astrónomos a los que no les gusta esta idea porque no la pueden probar.

Reportaje: Entrevista

 

 

Los misterios del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

              Los “ojos” de Alma atisban supercúmulos de protoestrellas

Los cúmulos globulares aparecen como brillantes aglomeraciones de hasta un millón de estrellas antiguas, son uno de los objetos más antiguos del Universo. Si bien están presentes en gran cantidad alrededor y dentro de muchas galaxias, los ejemplares recién nacidos son extremadamente raros y las condiciones necesarias para su aparición no habían sido detectadas hasta ahora.

 

 

 

 

 

Usando el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, un grupo de astrónomos descubrió lo que podría ser el primer cúmulo globular a punto de nacer que se conozca: una nube de gas molecular increíblemente masiva y densa pero aún sin estrellas.

“Podemos estar en presencia de uno de los más antiguos y extremos modos de formación estelar en el Universo”, dijo el astrónomo Kelsey Johnson, de la Universidad de Virginia en Charlottesville y autor principal de un artículo que será publicado en el Astrophysical Journal. “Este interesante objeto parece arrancado directamente del Universo temprano”, agrega Johnson, “descubrir un objeto que tiene todas las características de un cúmulo globular, pero que aún no haya comenzado a formar estrellas, es como encontrar un huevo de dinosaurio a punto de eclosionar”.

Este objeto, al que el astrónomo se refiere irónicamente como el Petardo, se encuentra a aproximadamente 50 millones de años luz, al interior de una famosa dupla de galaxias en colisión (NGC 4038 y NGC 4039) conocidas como las galaxias Antena. Las fuerzas gravitacionales generadas por el proceso de fusión entre ambas están desencadenando una cantidad colosal de formaciones estelares, gran parte de ellas al interior de densos cúmulos.

 

 

 

 

 

Pero lo que hace único al Petardo es su enorme masa concentrada en un espacio relativamente pequeño y sin la presencia de estrellas en él. Todos los cúmulos similares observados anteriormente por los astrónomos están repletos de estrellas. El calor y la radiación de esas estrellas han alterado considerablemente el ambiente circundante, borrando cualquier evidencia de sus fríos y tranquilos inicios.

Gracias a ALMA, los astrónomos pudieron encontrar y estudiar detalladamente un ejemplo prístino de un cúmulo en su estado original, antes que las estrellas cambien para siempre sus características únicas. Esto proporcionó a los astrónomos un primer vistazo de las condiciones que pueden haber llevado a la formación de muchos cúmulos globulares (si no todos).

 

 

 

Las galaxias Antena observadas en luz visible con el telescopio espacial Hubble (superior), extensas nubes de gas molecular (derecha). (Inferior) Primer cúmulo globular en formación que se haya identificado. (Foto: ALMA)

“Nebulosas con este potencial se habían considerado hasta ahora adolescentes, posteriores al inicio de la formación estelar”, dijo Johnson. “Esto significaba que el semillero ya se había alterado. Y para entender la formación de un cúmulo globular necesitas ver su verdadero origen”, agregó.

La mayoría de los cúmulos globulares se formaron durante un ‘baby boom’ ocurrido hace aproximadamente 12 mil millones de años, en los inicios de las galaxias. Cada una contiene densas agrupaciones de hasta un millón de estrellas de segunda generación, estrellas con concentraciones de metales pesados notoriamente bajas, lo que indica que se formaron muy temprano en la historia del Universo. Nuestra propia Vía Láctea es conocida por contener al menos unos 150 cúmulos de estas características, aunque podría contener muchos más.

A través del Universo se siguen formando cúmulos de estrellas de diferentes tamaños. Es posible, aunque muy improbable, que los más grandes y densos terminan transformándose en cúmulos globulares.

El cúmulo globular Omega Cantauri con diez millones de estrellas

“La probabilidad de supervivencia para que un cúmulo de estrellas joven y masivo se mantenga intacto es muy baja, de alrededor del uno por ciento” dijo Johnson. “Fuerzas externas e internas tienden a separar estos objetos, ya sea formando cúmulos abiertos como las Pléyades o desintegrándolos completamente para formar parte del halo galáctico”.

Sin embargo, los astrónomos piensan que el objeto que observaron con ALMA, que contiene gas molecular equivalente a 50 millones de veces la masa del Sol, es lo suficientemente denso como para tener una buena probabilidad de ser uno de los afortunados en convertirse en cúmulo estelar.

Los cúmulos globulares evolucionan rápidamente, en sólo un millón de años, desde su estado embrionario carente de estrellas. Esto significa que el objeto descubierto por ALMA está pasando por una etapa muy especial de su vida, ofreciendo a los astrónomos una oportunidad única de estudiar un componente importante del Universo temprano.

Los datos de ALMA también indican que la nube del Petardo se encuentra bajo una presión extrema, aproximadamente 10 mil veces mayor que las típicas presiones interestelares, lo que apoya las teorías que señalan que para formar cúmulos globulares se requieren altas presiones.

Al explorar las galaxias Antena, Johnson y su equipo observaron las débiles emisiones de las moléculas de monóxido de carbono, lo que les permitió obtener imágenes y características de distintas nubes de gas y polvo. La falta de indicador térmico apreciable –revelador de la presencia de gas calentado por estrellas cercanas– confirma que este objeto recién descubierto aún se encuentra en su estado prístino, sin alteraciones.

Posteriores estudios con ALMA pueden revelar nuevos ejemplos de supercúmulos de protoestrellas en las galaxias Antena y en otras galaxias en colisión, aportando luces sobre los orígenes de estos antiguos objetos y su función en la evolución galáctica. (Fuente: OBSERVATORIO ALMA/DICYT)