Perseguimos que la Inteligencia Artificial nos lleve mucho más lejos en el saber de todas las disciplinas del conocimiento Humano, y, para ello, trabajan una legión de Mentes escogidas y expertas en computación, matemáticas y otras especialidades científicas que tienen aplicación directa en la Inteligencia Artificial, sin olvidar los materiales necesarios para que todos esos proyectos se hagan realidad.
Cuando se trata de tecnología de altas prestaciones, Apple siempre se destaca. Desde el lanzamiento de su primer chip clase «M», Apple ha seguido innovando y lanzando generaciones de procesadores cada vez más potentes y eficientes. La clave de este rendimiento extraordinario yace en el corazón de todos los productos Apple: sus chips personalizados. En esta guía completa, daremos un recorrido en profundidad por los diferentes chips clase M de Apple. Acompáñanos en esta fascinante travesía.
‘Blackwell’, así se llama el nuevo microchip de Inteligencia Artificial más avanzado del mundo. Es hasta 30 veces más rápido que el anterior modelo H100 y está fabricado por la empresa ‘Nvidia’.
Willow, el chip cuántico de última generación
Hoy tengo el placer de anunciar Willow, nuestro chip cuántico más reciente. Willow ofrece un rendimiento de vanguardia en distintas métricas, lo cual ha hecho posibles dos logros importantes:
El primero es que Willow permite reducir exponencialmente los errores cuánticos cuando aumenta el número de cúbits. Con ello, se abre una vía para resolver el problema de la corrección de errores cuánticos, que está sobre la mesa desde hace cerca de treinta años.
En segundo lugar, Willow ha sido capaz de realizar en menos de cinco minutos un cálculo de referencia estándar que, a uno de los superordenadores más rápidos de hoy día, le llevaría 10 mil trillones de años —es de decir 1025 años—, una cifra que supera de largo la edad del universo.
No me transmiten buenas sensaciones
¿Cuál es el impacto de la robótica en la sociedad? Los robots automatizan tareas monótonas, repetitivas y potencialmente peligrosas. Así, la tecnología permite que las personas dejen tareas de poco valor para las máquinas, mientras los seres humanos pueden realizar tareas más satisfactorias y complejas.
Es una manera de “pintarlo”, una forma benévola de querer convencernos de lo bueno que serán los Robots para nosotros. Sin embargo, nadie me quita de la cabeza que, dentro de algunas decenas de años, tendremos por todas partes a estos “personajes” metidos en todas las áreas de la Sociedad Humana, y, estamos tratando de que, en sus cerebros positrónicos lleven el ingrediente de tener la Consciencia de SER, y, si eso llega…
¡¡¡ OJO !!!
Son más fuertes que nosotros, no necesitan ni comer ni dormir, las enfermedades están ausentes, se reciclan solos, las radiaciones dl Espacio no les afecta, sus mentes almacenan todos los datos que se les pueda proporcionar en Chips prodigiosos… ¡Serán los verdaderos conquistadores de otros mundos! ¿Para qué nos querían a nosotros.
“No me extrañaría que, dentro de unos años, nos anuncien que la NASA ha decidido que sean los Robots los que vayan a Marte a colonizar el planeta y tratar de buscar algún signo de vida en el subsuelo de aquel pequeño mundo.
Se descarta por peligroso y falta de seguridad para los viajeros, el anunciado tantas veces viaje tripulado al planeta Rojo.
¿Qué alegría, hemos conseguido tenerlo todo con un simple pulsar unas teclas!
Unos aparatos de complejos enredados de cables y chips prodigiosos, nos hacen la vida más fácil, y, lo mismo sacamos dinero del banco que hacemos los pagos sin movernos de casa, y, mandamos una transferencia a nuestro hermano que está en apuros. LO mismo pagamos desde el teléfono móvil los impuestos, y, mandamos mensajes a nuestros seres queridos lejos de nosotros, o, lo vemos en video conferencia.
Relacionar aquí todas las maravillas que estas técnicas nos ofrecen… ¡Sería cuestión de rellenar muchos, muchos folios en blanco cantando las excelencias de las computadoras y demás artilugios tecnológicos del Presente.
Claro que, si nos paramos a pensar… ¿Qué pasaría si todo el Sistema se cayera durante varios meses?
Mucha nube pero al final si se cae un servicio se cae medio Internet.
“Internet ha tenido tos durante una hora. Lo hemos visto esta mañana, cuando decenas de sitios y servicios web han estado inaccesibles. Spotify, Reddit o The New York Times (entre otros muchos) estaban caídos, y la razón era que todos ellos dependían de un mismo eslabón para distribuir sus contenidos.
Ese eslabón no era otro que Fastly —antes le pasó a Cloudflare—, y eso ha vuelto a plantear lo sorprendentemente “débil” que es internet. Algo malo estamos haciendo cuando con toda la tecnología que tenemos y todo lo que hemos avanzado, si se cae uno de esos eslabones se cae media internet.”
“Hay desde luego diversas alternativas en todos los campos. Lo demuestra un reciente estudio de Canalys en el que “le sacaban una foto” a la situación actual en materia de infraestructuras en la nube.
Según esos datos, 6 de cada 10 sitios o servicios web en todo el mundo dependen de tan solo tres proveedores: Amazon Web Services, Microsoft Azure y Google Cloud. Hay otros participantes importantes en ese mercado (Alibaba, Oracle, IBM, Salesforce, Rackspace, VMWare) pero todos ellos aglutinan muchísimos proyectos y desarrollos usados por millones de personas.
No solo eso: a esos proveedores de infraestructura en la nube, que son los sitios en los que están hospedados esos servicios, se le suman otros muchos componentes, como por ejemplo servidores de DNS, de bases de datos o, como en este caso, CDN (Content Delivery Networks), plataformas que actúan como catalizadoras del acceso a la información.”
En todo esto, y, siendo tan bonito leer reportajes de los avances de los Ordenadores cuánticos y otros descubrimientos que nos pueden llevar a crear Robots tan Inteligentes en el Futuro que, todos nuestros problemas estarán resueltos. Por mi parte creo que, nuestros verdaderos problemas comenzarán, cuando todo eso llegue, a partir de ahí comenzará una nueva Era para la Humanidad que no supo calcular el peligro de crear una !Nueva Raza! Artificial que podría acabar con sus creadores.
Se denominan autótrofos por que generan su propio alimentos, a través de sustancias inorgánicas para su metabolismo. Los organismos autótrofos producen su masa celular y materia orgánica, a partir del dióxido de carbono, que es inorgánico, como única fuente de carbono, usando la luz o sustancias químicas como fuente de energía. Las plantas y otros organismos que usan la fotosíntesis son fotolitoautótrofos; las bacterias que utilizan la oxidación de compuestos inorgánicos como el anhídrido sulfuroso o compuestos ferrosos como producción de energía se llaman quimiolitotróficos.
Los órganos autótrofos son los que producen el alimento de esos seres. Los seres autótrofos son una parte esencial en la cadena alimenticia, ya que absorben la energía solar o fuentes inorgánicas como el dióxido de carbono y las convierten en moléculas orgánicas que son utilizadas para desarrollar funciones biológicas como su propio crecimiento celular y la de otros seres vivos llamados heterótrofos que los utilizan como alimento. Los seres heterótrofos como los animales, los hongos, y la mayoría de bacterias y protozoos, dependen de los autótrofos ya que aprovechan su energía y la de la materia que contienen para fabricar moléculas orgánicas complejas. Los heterótrofos obtienen la energía rompiendo las moléculas de los seres autótrofos que han comido. Incluso los animales carnívoros dependen de los seres autótrofos porque la energía y su composición orgánica obtenida de sus presas procede en última instancia de los seres autótrofos que comieron sus presas. también se pueden clasificar en: fotosintéticos y quimiosintéticos.
Los seres autótrofos siguen dos vías diferentes para transformar la biomasa que ingieren en los compuestos complejos de los que se componen sus tejidos. Esta transformación puede ser mediante fermentación anaeróbica o a través de respiración aeróbica. La primera vía se restringe a las células procariotas simples, como las fermentadoras, las bacterias metanogénicas y los hongos Ascomycota responsables de la fermentación del etanol (alcohol etílico). La segunda vía se hizo posible a partir del momento en que la cantidad de oxígeno atmosférico, generado por los vegetales, alcanzó un nivel suficientemente alto como para que algunos seres pro-cariotes pudieran utilizar la respiración aeróbica para generar trifosfato de adenosina más eficientemente que por fermentación. Desde un punto de vista energético, la oxidación es claramente ventajosa. Así, por cada mol de glucosa se liberan 197 KJ por fermentación en ácido láctico, 232 KJ por fermentación alcohólica y 2’87 MJ por la oxidación completa, lo que representa para esta última una ganancia que está comprendida entre 12 y 14 veces.
Reino Monera (Bactérias, Cianobactérias)
Está formado por bacterias y cianobacterias (algas azules). Pueden vivir en diversos lugares, tales como agua o aire y en el interior de los animales y plantas como parásitos. La mayoría de sus representantes son heterótrofas (no pueden producir su propio alimento), pero también hay algunas autótrofas (producen sin alimentos, por ejemplo a través de la fotosíntesis). Existen también bacterias aerobias es decir, que necesitan oxígeno para vivir, el requisito de anaerobios, que no pueden vivir en presencia de oxígeno, y anaerobios facultativos, que pueden vivir tanto en ambientes oxigenados como en ambientes no oxigenados.
La forma física de las bacterias pueden ser de cuatro tipos: cocos, bacilos, vibriones y espirilos. Los cocos pueden unirse y formar colonias. Grupos de dos cocos forman diplococos, alineados forman estreptococos y en grupos forman una infección de estafilococos.
Por ser los seres vivientes más primitivos en la Tierra, son también los que están en mayor número. Por ejemplo, en un gramo de tierra fértil pueden haber cerca de 2,5 mil millones de bacterias, en hongos 400.000 y en algas y protozoos entre 30.000 y 50.000.
Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeños
Cuando pensamos en seres vivos, de forma automática acudimos a perros, gatos, algún que otro invertebrado y, con suerte, quizás una planta.
No es para menos, pues los organismos macroscópicos nos rodean desde que empieza la mañana hasta que nos acostamos: aquél canto de un pájaro mientras vamos a trabajar, las hormigas atareadas haciendo filas para alimentarse y otros muchos seres vivos nos rodean en el día a día. Por entronizado que esté el entorno, la vida se abre paso como puede.
Las bacterias son organismos microscópicos unicelulares. Se encuentran entre las formas de vida más antiguas conocidas en el planeta.
Hay miles de tipos de bacterias diferentes y pueden vivir en todos los medios y ambientes imaginables, en cualquier parte del mundo. Viven en el suelo, en el agua, en el aire, en todas partes.
La importancia de las bacterias en nosotros
Alguna vez te has preguntado ¿cuántas batallas enfrenta nuestro cuerpo para poder mantenernos sanos?
El cuerpo humano, cuenta con una serie de barreras de defensa que le permiten mantenerlo íntegro y sano. Dentro de estas barreras se encuentran la piel, las mucosas, el cerumen, los anticuerpos y una cantidad billonaria de bacterias que, le confieren al cuerpo un estado de salud adecuado que le permite librar la batalla contra otros microorganismos que pueden llegar a alterar su estado de equilibrio.
La microbiota nos ayuda a eliminar toxinas, fabricar vitaminas e incluso a entrenar nuestro sistema inmunitario. De ella hemos descubierto que nos ayuda no solo a digerir los alimentos y extraer su energía, sino también a eliminar toxinas, fabricar vitaminas y entrenar nuestro sistema inmunitario.
Existe una gran cantidad de bacterias buenas que se encuentran en el cuerpo de forma natural, éstas son en conjunto, lo que conocemos como microbiota, anteriormente denominada flora bacteriana; sin embargo, existen otras que, por lo regular no forman parte de él, y cuando llegan a instalarse pueden alterar el estado de salud del individuo, desencadenando un evento de infección o incluso la muerte. Por ello, podríamos decir que son malas, al ocasionarnos un perjuicio o daño.
Las bacterias también tienen su importancia en el medio ambiente, así como cualquier ser vivo. Describamos algunos papeles fundamentales.
Descomposición: Actúan en el reciclaje de la materia, devolviendo al ambiente moléculas y elementos químicos para ser re-utilizados por otros seres vivos.
Fermentación: algunas bacterias se utilizan en las industrias para producir yogurt, queso, etc (lácteos).
Industria farmacéutica: para la fabricación de antibióticos y vitaminas.
Industria química: para la producción de alcoholes como el metanol, etanol, etc.
Genética: mediante la alteración de su ADN, podemos hacer productos de interés para los seres humanos, como la insulina.
Determinación de nitrógeno: permite eliminar el nitrógeno del aire y tirado en el suelo, que sirve como alimento para las plantas.
Todo eso es posible como consecuencia de que en el núcleo de un átomo existen fuerzas (fuerzas nucleares) que mantienen los protones y neutrones ligados. Estas fuerzas deben ser suficientemente grandes para contrabalancear las repulsiones eléctricas resultantes de la carga positiva de los protones. La Simetría que está presente en los átomos hace que, la evolución bioquímica hiciera posible la presencia de estos infinitesimales seres que, evolucionaron hasta lo que hoy podemos ver a nuestro alrededor.
Los nutrientes necesarios para el metabolismo de tipo heterótrofo proceden de la digestión de los tejidos vegetales o de otros heterótrofos. En el metabolismo heterótrofo hay notables regularidades orgánicas. Entre ellas destaca claramente el hecho de que al representar en un gráfico logarítmico la tasa metabólica basal (TMB), – metabolismo mínimo cuando el animal se encuentra en reposo absoluto – frente al peso, los resultados relativos a los animales comprendidos entre el ratón y el elefante se dispongan a lo largo de una línea recta.
Representación de Kleiber del metabolismo basal de los mamíferos desde el ratón al elefante.
Esta dependencia lineal en un gráfico logarítmico fue descubierta por Kleiber en 1.932, y muestra que, si representamos las TMB en vatios y el peso, p, en kilogramos, la dependencia funcional entre ambas magnitudes es 3’52 p0’74. Si en vez del peso, se representa la TMB frente a la superficie corporal de los animales, el exponente de Kleiber es 0’67, que es el valor que se había supuesto anteriormente. Las medidas posteriores de la TMB en cientos de especies han confirmado la primera dependencia funcional que ha sido redondeada en 1.961 por el propio Kleiber, en 3’4 p0’75 (en W).
Aunque aún no se ha encontrado una explicación definitiva de la razón de esta ley de potencia con exponente ¾, el análisis de los requerimientos mecánicos de los cuerpos animales dan una buena pista. Con criterios elásticos se deduce que el cubo de la longitud crítica de rotura de los huesos varía linealmente con el cuadrado del diámetro (d) de la sección de los mismos, que a su vez, es proporcional a p3/8. La potencia muscular es proporcional al área de su sección transversal (esto es, proporcional a d2), y por tanto, la forma funcional de la potencia máxima se expresa como (p3/8)2, o lo que es lo mismo, p0’75.
Una explicación aún más fundamental se basa en la geometría y en la física de la red vascular necesaria para distribuir los nutrientes y eliminar los materiales de desecho del cuerpo de los animales. Estas redes que llenan el espacio, son fractales que determinan las propiedades estructurales y funcionales de los sistemas cardiovasculares y respiratorios, y de sus propiedades se deduce que el metabolismo total de los organismos escala con su masa elevada a la potencia ¾
El sistema respiratorio de los Vertebrados, al igual que el circulatorio, está muy perfeccionado y adaptado para aportar la energía necesaria a los tejidos de los animales homeotermos, de forma que les permita resistir en condiciones desfavorables
El exponente de Kleiber tiene una consecuencia importante para los organismos con TMB específica (la TMB dividida por el peso corporal) decrecientes. Esta relación limita el tamaño mínimo de los animales homeotermos y facilita que las grandes criaturas puedan sobrevivir en condiciones ambientales adversas. La ingesta diaria de néctar de un pequeño colibrí es equivalente a la mitad del peso de su cuerpo (para los seres humanos, la comida diaria representa alrededor del 3% del peso corporal), y los animales de sangre caliente, de tamaño menor que un colibrí, tendrían que estar comiendo continuamente para poder compensar las rápidas pérdidas de calor.
En el otro extremo, los grandes mamíferos pueden pasar varios días sin alimentarse, recurriendo a las reservas de grasa acumuladas para mantener su bajo metabolismo durante periodos de hibernación relativamente largos.
Los casos de separación de la tendencia general ilustran varios modos de adaptación al medio. Para regular termicamente su cuerpo en agua fría, la TMB de las focas y las ballenas es el doble de las de otros animales de su tamaño. Los mamíferos del desierto, con sus bajas TMB, se han adaptado a los periodos de carencia de alimentos y a la escasez recurrente o crónica de agua.
En su colonización del medio terrestre, los cambios evolutivos de los primeros habitantes del medio acuático derivaron en extremidades locomotoras pentadáctilas con adaptaciones específicas, tales como las manos desgarradoras de los úrsidos, los felinos, etc.
Naturalmente, la TMB representa sólo una parte de las necesidades energéticas. La digestión eleva las tasas metabólicas de todos los animales y la reproducción requiere aumentos periódicos de energía (como también ocurre con el cambio de plumaje o pelaje en los pájaros y mamíferos). La búsqueda de comida es una actividad ineludible para todos los animales que no estén hibernando. Simplemente por estar de pie, la tasa metabólica en los pájaros es un 15 por ciento superior a la tasa de reposo; y en los mamíferos, exceptuando al caballo, esta diferencia llega al 30 por ciento. El límite metabólico, múltiplo de la TMB durante el máximo esfuerzo, es mucho mayor durante la carrera, natación o el vuelo.
Tendría que mencionar ahora la reproducción y sus distintas formas, que varían de modo continuo entre los casos extremos de la cría generalizada generada de golpe y los nacimientos espaciados de un único neonato. El primer caso maximiza la producción de individuos que maduran con rapidez, y estas especies son más oportunistas. La mayoría de las bacterias, así como muchas especies de insectos, pertenecen a este grupo de seres que se reproducen de forma oportunista e intensa. En condiciones adecuadas llegan a invertir una parte tan importante de su metabolismo en la reproducción que acaban convirtiéndose en plagas indeseables. En unos pocos días de verano, pequeños insectos como los áfidos, dedican el 80% de su metabolismo a reproducirse, en una estrategia que reduce de forma importante la vida de los progenitores y también las posibilidades de reproducción repetida. Los endoparásitos, sin embargo, son una desafortunada excepción a esta restricción: la tenia, debido al fácil suministro de energía que recibe, se reproduce copiosamente y puede sobrevivir más de quince años.
En el otro extremo del rango reproductivo están las especies del tipo selección-k que se reproducen varias veces, espaciando los nacimientos y cada vez con crías poco numerosas, y que maduran lentamente. El resultado de esta forma de reproducción es una tasa baja de crecimiento y poca capacidad de colonización, que se compensa con la mayor longevidad, competitividad, adaptabilidad y frecuentemente por un comportamiento social altamente desarrollado.
Independientemente de su posición en el rango reproductivo, los rasgos comunes que presentan las transformaciones bioquímicas asociadas con la producción de los gametos y el crecimiento de los embriones permiten estimar la eficiencia de la reproducción heterótrofa. El máximo teórico de la eficiencia, para transformar los monómeros procedentes de la alimentación en los polímeros de la biomasa, está en torno a un impresionante 96%. Ineficiencias inevitables en la digestión de nutrientes y en la reproducción de recambio de tejidos reducen algo esta eficiencia, que siempre se mantiene por encima del 70%.
Los protozoos son organismos unicelulares, pero a diferencia de las bacterias, tienen membrana nuclear (cariomembrana, son eucariotas). Son organismos complejos, con un sistema reproductivo, un aparato locomotor digestivo y la capacidad de producir energía por lo que durante muchos años han sido considerados “animales unicelulares”. Esta forma de vida todavía viven en colonias, ya sea de forma individual o como parásitos. Se encuentra en agua dulce, agua salada, en suelos húmedos o en otros seres como huéspedes. Pueden causar enfermedades a los seres humanos.
Los rendimientos se pueden medir fácilmente en los seres heterótrofos unicelulares que se reproducen rápidamente: los rendimientos más altos son los de las bacterias (50 – 65%) y se encuentra un valor medio en las levaduras y los protozoos. No es sorprendente que los poiquilotermos sedentarios sean, entre los heterótrofos superiores, los más eficientes en la transformación de nutrientes en zoomasa: sus tasas se aproximan frecuentemente al 70 – 80%, que es la máxima eficiencia posible.
La temperatura ambiental es determinante también para la reproducción y el desarrollo. Generalmente a mayor temperatura el desarrollo es más rápido, es decir, el tiempo requerido para una determinada etapa del desarrollo se acorta. La razón está en que a mayor temperatura se aceleran los procesos fisiológicos del organismo. La influencia de la temperatura sobre el proceso de reproducción y el número de descendientes es determinante en muchos casos. Los animales de sangre caliente u homotermos pueden adaptarse a diferentes ambientes tanto fríos como cálidos, porque regulan su temperatura corporal.
Poiquilotermos
Entre los vertebrados, los homeotermos presentan tasas de crecimiento fetal mucho más altas que las especies poiquilotermas. Los ornitólogos han sido los primeros en estudiar la energética de la reproducción debido a la importancia del huevo en la vida de las aves. La energía necesaria para el crecimiento testicular en los pájaros, durante el periodo de rápido desarrollo de las gónadas, está comprendido entre el 0’4 y el 2 por ciento del metabolismo basal. El crecimiento de las gónadas femeninas generalmente requiere aportes energéticos tres veces mayores que las masculinas pero, en cualquier caso, es una cantidad pequeña comparada con el coste energético de la producción e incubación de un huevo.
La cadena alimenticia, los herbívoros, los carnívoros, peces, natación, carreras y saltos, el vuelo, y tantos y tantos conceptos implicados me aconsejan reducir el presente trabajo que, en realidad, sólo quería limitarse a facilitar algunos conocimientos del planeta y que, por mi cuenta y riesgo, he unido a los seres que lo pueblan y cómo se mantienen y están relacionados. Pero no es eso lo que pretendía al empezar, así que, volveremos al tema principal de este Blog: la Física, la Astronomía y los Pensamientos.
A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”. El término mismo era relativamente nuevo. En Cambridge, la física se enseñaba como parte del grado de matemáticas.
En este sistema no había espacio para la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.
En el cielo las estrellas: El viejo Cavendish
En la década de 1.870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó. Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.
Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental. Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su nombre.
primer profesor J. J. Thomson como director del laboratorio
Un bosón es una partícula elemental (o estado ligado de partículas elementales, por ejemplo, un núcleo atómico o átomo) con espín entero, es decir, una partícula que obedece a la estadística de Bose-Einstein (estadística cuántica), de la cual deriva su nombre. Los bosones son importantes para el Modelo estándar de las partículas. Son bosones vectoriales de espín uno que hacen de intermediarios de las interacciones gobernadas por teorías gauge.
En física se ha sabido crear lo que se llama el Modelo estándar y, en él, los Bosones quedan asociados a las tres fuerzas que lo conforman, el fotón es el Bosón intermediario del electromagnetismo, los W+, w– y Zº son bosonesgauge que transmiten la fuerza en la teoría electrodébil, mientras que los gluones son los bosones de la fuerza fuerte, los que se encargan de tener bien confinados a los Quarks conformando protones y neutrones para que el núcleo del átomo sea estable. La Gravedad, no se ha dejado meter en el modelo y, por eso su bosón no es de gauge. El gravitón que sería la partícula mediadora de la gravitación sería el hipótetico cuanto de energía que se intercambia en la interacción gravitacional.
Ejemplos de los Bosones gauge son los fotones en electrodinámica cuántica (en física, el fotón se representa normalmente con el símbolo , que es la letra griega gamma), los gluones en cromodinámica cuántica y los bosones W y Z en el modelo de Winberg-Salam en la teoría electrodébil que unifica el electromagnetismo con la fuerza débil. Si la simetría gauge de la teoría no está rota, el bosóngauge es no masivo. Ejemplos de bosonesgauge no masivos son el fotón y el Gluón.
Si la simetría gauge de la teoría es una simetría rota el bosóngauge tiene masa no nula, ejemplo de ello son los bosones W y Z . Tratando la Gravedad, descrita según la teoría de la relatividad general, como una teoría gauge, el bosóngauge sería el gravitón, partícula no masiva y de espín dos.
Diagrama de Feynman mostrando el intercambio de un fotón virtual (simbolizado por una línea ondulada y ) entre un positrón y un electrón. De esta manera podemos llegar a comprender la construcción que se ha hecho de las interacciones que están siempre intermediadas por un Bosón mensajero de la fuerza.
En el modelo estándar, como queda explicado, hay tres tipos de bosones de gauge: fotones, bosones W y Z y gluones. Cada uno corresponde a tres de las cuatro interacciones: fotones son los bosones de gauge de la interacciones electromagnética, los bosones W y Z traen la interacción débil, los gluones transportan la interacción fuerte. El gravitón, que sería responsable por la interacción gravitacional, es una proposición teórica que a la fecha no ha sido detectada. Debido al confinamiento del color, los gluones aislados no aparecen a bajas energías.
Aquí, en el gráfico, quedan representadas todas las partículas del Modelo estándar, las familias de Quarks y Leptones que conforman la materia y los bones que intermedian en las interacciones o fuerzas fundamentales que están presentes en el Universo. La Gravedad no ha podido ser incluida y se ha negado a estar unida a las otras fuerzas. Así el bosón que la transnmite, tampoco está en el modelo que es incompleto al dejar fuera la fuerza que mantiene unidos los planetas en los sistemas solares, a las galaxias en los cúmulos y nuestros pies unidos a la superficie del planeta que habitamos. Se busca una teoría que permita esta unión y, los físicos, la laman gravedad cuántica pero… ¡no aparece por ninguna parte!
Llegados a este punto tendremos que retroceder, para poder comprender las cosas, hasta aquel trabajo de sólo ocho páginas que publicó Max Planck en 1.900 y lo cambió todo. El mismo Planck se dio cuenta de que, todo lo que él había tenido por cierto durante cuarenta años, se derrumbaba con ese trabajo suyo que, venía a decirnos que el mundo de la materia y la nergía estaba hecho a partir de lo que el llamaba “cuantos”.
Supuso el nacimiento de la Mecánica Cuántica (MC), el fin del determinismo clásico y el comienzo de una nueva física, la Física Moderna, de la que la Cuántica sería uno de sus tres pilares junto con la Relatividad y la Teoría del Caos. Más tarde, ha aparecido otra teoría más moderna aún por comprobar, ¿las cuerdas…?
El universo según la teoría de las cuerdas sería entonces una completa extensa polícroma SINFONIA ETERNA de vibraciones, un multiverso infinito de esferas, cada una de ellas un universo independiente causalmente, en una de esas esferas nuestra vía láctea, en ella nuestro sistema solar, en él nuestro planeta, el planeta tierra en el cual por una secuencia milagrosa de hechos se dió origen a la vida autoconsciente que nos permite preguntarnos del cómo y del por qué de todas las cosas que podemos observar y, también, de las que intuimos que están ahí sin que se dejen ver.
Claro que, cuando nos adentramos en ese minúsculo “mundo” de lo muy pequeño, las cosas difieren y se apartan de lo que nos dicta el sentido común que, por otra parte, es posible que sea el menos común de los sentidos. Nos dejamos guiar por lo que observamos, por ese mundo macroscópico que nos rodea y, no somos consciente de ese otro “mundo” que está ahí formando parte del universo y que, de una manera muy importante incide en el mundo de lo grande, sin lo que allí existe, no podría existir lo que existe aquí.
Interacciones en la naturaleza
Albert Einstein habría dicho que “es más importante la imaginación que el conocimiento”, el filósofo Nelson Goodman ha dicho que “las formas y las leyes de nuestros mundos no se encuentran ahí, ante nosotros, listas para ser descubiertas, sino que vienen impuestas por las versiones-del-mundo que nosotros inventamos – ya sea en las ciencias, en las artes, en la percepción y en la práctica cotidiana-.”
Sin embargo yo, humilde pensador, me decanto por el hecho cierto de que, nuestra especie, siempre llegó al conocimiento a través de la imaginación y la experiencia primero, a la que más tarde, acompañó largas secciones de estudio y muchas horas de meditación y, al final de todo eso, llego la experimentación que hizo posible llegar a lugares ignotos que antes nunca, habían podido ser visitados. De todo ello, pudieron surgir todos esos “nuevos mundos” que, como la Mecánica Cuántica y la Relatividad, nos describían el propio mundo que antes nos era desconocido.
Cuando comencé éste trabajo sólo quería dar una simple explicación de los bosones y su intervención en el mundo de lo muy pequeño pero…
Demócrito de Abdera
No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que para determinar si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.
Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa prueba, no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus datos a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.
Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los datos indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.
En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han sido posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.
A todo esto, una buena pregunta sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón? Hoy, la respuesta tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.
Este es, el resultado ahora de la colisión deprotonesen el LHC
Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los datos fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La palabra de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.
Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar conseguir un cabo de cuerda. Se corta y… ¡ya tenemos dos!
¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde E.Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.
¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos saber, el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se producen los fenómenos que podemos contemplar en la Naturaleza y, si de camino, podemos llegar a saber el por qué de su comportamiento… ¡mucho mejor!
El camino será largo y, a veces, penoso pero… ¡llegaremos!
Nuestra insaciable curiosidad nos llevará lejos en el saber del “mundo”. llegaremos al corazón mismo de la materia para comprobar si allí, como algunos imaginan, habitan las cuerdas vibrantes escondidas tan profundamente que no se dejan ver. Sabremos de muchos mundos habitados y podremos hacer ese primer contacto tantas veces soñado con otros seres que, lejos de nuestro región del Sistema solar, también, de manera independiente y con otros nombres, descubrieron la cuántica y la relatividad. Sabremos al fin qué es la Gravedad y por qué no se dejaba juntar con la cuántica. Podremos realizar maravillas que ahora, aunque nuestra imaginación es grande, ni podemos intuir por no tener la información necesaria que requiere la imaginación.
Como decía Hilbert: ¡”Tenemos que saber, sabremos”!
Siempre hemos tratado de saber donde estamos pero… ¿Lo hemos conseguido?
Mentes privilegiadas, miembros especiales de nuestra especie, a lo largo de la Historia nos han ido señalando el camino, nos dijeron (o al menos trataron de hacerlo), de donde pudimos partir, y, hacia donde podemos llegar.
Claro que, eso sí, Cuando hablamos de todo esto: La Velocidad de la Luz, la Materia, el Espacio Tiempo, las Fluctuaciones de vacío, la evolución de las estrellas y de cómo crean elementos complejos a partir de otros más simples, la existencia de agujeros negros, estrellas de neutrones y enanas blancas…
Antes de todo eso… ¡Hay que hablar y tratar de saber lo que el TIEMPO es!
Bueno, si lo pensamos detenidamente, el Tiempo quizás sea lo más importante del Universo, sin Tiempo… ¿Qué podría existir!