Ene
12
¿Quiénes somos? ¡Quién puede saber eso!
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (1)
Contestar la pregunta que hacemos en el título del trabajo es imposible, no había aquí nadie que pudiera escribir aquella crónica de acontecimientos en la que se pudiera contar la “llegada” del Ser Humano a nuestro planeta que, sería a base de evolucionar durante millones de años partiendo de otras formas más simples. Sólo podemos buscar los indicios (si existen) de lo que pudo pasar para que ahora, estemos aquí.
Se podría suponer que el primer hombre y la primera mujer verdaderos llegaron hace ahora algunos cientos de miles de años atrás. Hemos evolucionado a partir de la materia “inerte” hasta recorrer un camino evolutivo que nos trajo desde aquella primera célula viva replicante hasta los pensamientos.
Un día perdido en la noche de los tiempos… ¡Construimos las primeras ciudades!
Ess pregunta que ha estado en la mente de los seres humanos desde que en ellos estuvo presente el pensamiento en aquellas primeras Civilizaciones antiguas que todos tenemos en mente y que dejaron su huella que de una u otra manera, nos hablan de una evolución mental que, a veces, profundizaba en terrenos situados más allá de lo material. Cuando no se sabía entender los hechos ni se encontraban las respuestas, con frecuencia, se acudió a la mitología y a divinidades que eran portadoras de mágicos poderes y, de esa manera hemos estado caminando hasta llegar a los orígenes de la Ciencia que, comenzó una nueva etapa y en lugar de adjudicar lo inexplicable a los dioses, se empezó a investigar y observar empleando la lógica para acercarnos a lo desconocido, a los misterioso secretos de la naturaleza y, ¡nuestro origen! puede ser calificado del mayor secreto que el Universo esconde.
“Estromatolitos del precámbrico en la Formación Siyeh, Parque Nacional de los Glaciares, Estados Unidos. En 2002, William Schopf de la UCLA publicó un artículo en la revista Nature defendiendo que estas formaciones geológicas de hace 3.500 millones de años son fósiles debidos a cianobacterias1 y, por tanto, serían las señales de las formas de vida más antiguas conocidas.”
El origen de la vida en una Tierra primigenia
Ciertamente, cuando hablamos del origen de la vida, aún hoy en la tercera década del siglo XXI, las opiniones son diversas y siempre nos encontramos con dos grupos que la sitúan en diferentes lugares. En un pequeño libro, no por ello menos importante, del ruso A. Oparín, publicado en Moscú, en su lengua original en 1894 y denominado El Origen de la vida, nos habla de ese espinoso y trascendente tema sin necesidad de permanecer anclados en ideas ya desfasadas, entre los irreversibles adelantos científicos y el creacionismo bíblico que está fuera de lugar en nuestra época del big bang o primitiva explosión cósmica, la expansión del universo, el conocimiento del átomo y los primeros vuelos espaciales, donde ya no hay lugar para “mitos” y son los hechos los que deben prevalecer.
Está claro que contestar a las preguntas: ¿Qué es la vida? ¿Cómo llegó hasta aquí? ¿Está sólo en el planeta Tierra? ¿Cómo pudo hacer acto de presencia, eso que llamamos conciencia? No resulta nada fácil y, hasta tal punto es así que hasta el momento, nadie la supo contestar de una manera convincente y se dan respuestas que, más o menos originales y agudas, no dejan de ser conjeturas. La que más me gusta es que la vida, es la materia evolucionada hasta su más alto nivel, dado que, de alguna manera, nosotros mismos estamos hechos de los mismos materiales que todo lo que nos rodea.
Existen dos puntos de vista que nos llevan al origen de la vida: El enfoque materialista y el otro idealista y espiritual, el primero es el que adopta A. Oparín y el otro es el que muestra la doctrina del P. Teilhard de Chardin, ni uno ni otro tiene porqué abandonar los grandes descubrimientos científicos y tecnológicos. Sin embargo y a medida que ha ido transcurriendo el tiempo, ambas posturas se han alejado la una de la otra como consecuencia de que la Ciencia, nos ha ido mostrando los posibles caminos que la vida tomó para hacerse presente y, desde luego, nada tiene que ver con el espíritu que la vida hiciera su aparición en este mundo nuestro y, seguramente, en otros muchos mundos de la Galaxia y de otros mundos dispersos por el Cosmos.
Desde el punto de vista de la Biología, que es el más usado, hace alusión a aquello que distingue a los reinos animal, vegetal, hongos, protistas, arqueas y bacterias del resto de manifestaciones de la Naturaleza. Implica las capacidades de nacer, crecer, reproducirse y morir, y, a lo largo de sucesivas generaciones, evolucionar.
Algunos hablan del “huevo cósmico”
Sin embargo, no parece que todo eso, sea exclusivo de lo que conocemos por vida, ya que, de alguna manera, si nos fijamos en una estrella desde que “nace” hasta que muere”, viene a enseñarnos que sigue el mismo camino que los seres vivos y ella también, nace, muere y se reproduce… a su manera. ¡Es todo tan complicado!
Claro que, cuando hablamos de la vida hay que ser respetuosos con las ideas que cada cual pueda tener al respecto. Será la fe de cada uno quien pueda llevarle a una u otra conclusión, o incluso, dejar esta en el aire con un gran signo de interrogación dentro de un agnósticismo (no ateísmo) latente que está aconsejado por los hechos más relevantes que la Ciencia nos pone delante de los ojos cuando de la vida se trata y lo que de ella, hemos podido llegar a saber.
A estas alturas, ni la propia Iglesia Católica excluye la teoría del mutacionismo moderado o evolucionismo dirigido que no escluye aquella idea de un primer y Supremo Hacedor. Ya en 1950, Pio XII en la Encíclica Humani Generis, recomendaba prudencia y no apasionamiento por una u otra tesis para aquellos que se dedicaban al estudio de tan delicados problemas y que, si no aparecía todo claro, se esperaba siempre a que nuevos descubrimientos iluminaran el remoto pasado de la vida y del universo.
Si nos centramos en el ser humano, los restos fósiles más antiguos confirman que durante la Era Cuaternaria, la Humanidad poseía fuertes restos morfológicos de las especies animales de las que pudo derivar. También algunos fósiles de simios que se acercaban, cada vez más, en su morfología, a las formas humanas.
Sin embargo aún el más antiguo de los hombres fósiles, hubo de poseer una capacidad cerebral mucho mayor que la de los simios actuales. Por tal motivo incluso los más acérrimos partidarios de la evolución rechazaron pronto que el hombre pudierta descender directamente del mono y se alinearon en dos escuelas fundamentales:
– La de los que afirmaban que el mono y el ser humano tenían un origen común en otro ser que no era ni Homo ni Pan, cuyo rastro se ha perdido por completo, o, al menos, nunca se ha podido encontrar. Las especies de los simios contemporáneos nuestros, “serían una degeneración”, mejor que una evolución de este antecesor común del ser humano y el mono.
– Y la de los que opinaban que el ser humano y el simio se parecen en lo somático, pero manifestaban que su antecesor no era el mismo, sino que el ser humano descendía de un ser distinto del antepasado del mono.
“Una de las especies humanas extintas mejor conocidas es el Homo erectus. Los restos de esta especie que proceden de China, se les dio el popular nombre de “hombre de Pekín”. A pesar que ninguna persona instruida negaría la existencia de estos seres en el pasado, los creacionistas les restan importancia diciendo mentiras sobre ellos.
La publicación creacionista “¿Abuelito?” de CHICK PUBLICATIONS dice respecto al hombre de Pekín: “Supuestamente databa de hace 500.000 años. Pero toda la evidencia ha desaparecido”
Pero, ¿Desapareció realmente toda la evidencia del “hombre de Pekín”? ¿No hay más restos del Homo erectus en Asía?
Los restos del “Hombre de Pekín” se hallaron entre 1921 y 1937, en el periodo entreguerras en un yacimiento a 40 kilómetros al sudoeste de Pekín llamado Zhoukoudian. El hallazgo consistía de una colección de cerca de 40 individuos en Zhoukoudian, entre ellos 5 calvarias (cráneos sin el esqueleto de la cara), numerosos dientes y restos del esqueleto postcraneal.
En 1941, desapareció la colección de fósiles, en plena Segunda Guerra Mundial, mientras era enviada desde Pekín a Estados Unidos.
Sin embargo, la evidencia no desapareció del todo, pues el científico Franz Weidenreich realizó, previó a la desaparición, un estudio con fotografías, radiografías y réplicas de los fósiles. En excavaciones recientes se han encontrado nuevos restos que han encajado con las réplicas hechas por Weidenreich lo cual dice mucho de la honestidad del trabajo de este científico.
Los creacionistas desprecian las dataciones dadas para estos restos fósiles diciendo: “Supuestamente databa de hace 500.000 años”, para confundir al lector. Sin embargo, el yacimiento del Zhoukoudian no ha desaparecido. Sigue allí y los trabajos de estratigrafía que se han realizado muestran que los restos de la cueva abarca un período de 600.000 años, y los restos que quedaron enterrados en los sedimentos de Zhoukoudian tienen una edad entre 550.000 y 300.000 años.
Es cierto que los fósiles originales de la cueva de Zhoukoudian se perdieron en confusos hechos, pero algo que los creacionistas no mencionan es que existen otros yacimientos de Homo erectus en China e Indonesia.”
Se cree que hace quince millones de años que comenzó la evolución que llevó hasta la aparición del ser humano. En procesos muy lentos y partiendo de otras formas de vida más elementales las mutaciones nos trajeron aquí.
Tampoco se ha llegado a ninguna conclusión satisfactoria con el hecho que plantea si la aparición del Ser humano tuvo lugar de una sola vez, derivando de una primitiva pareja por multiplicación, toda la Humanidad (versión textual del Génesis) o si fueron más de una pareja procedentes de diversos lugares de la Tierra, ésta última tesis se está imponiendo últimamente con mucha fuerza.
El acuerdo sobre cuál o cuáles fueron la cuna o “cunas” de la Humanidad. Se habla con fuerza del hemisferio austral pero ?dónde? Si el lugar o lugares, época y formas de nacimiento de la primera raza. o razas, humanas continúa siendo -¡y mucho más el de la vida!- y será con toda probabilidad, siempre, un gran misterio para la Ciencia y, cuando llegamos a este callejón sin salida, de alguna manera, sentimos frustración por intuir que nunca, podremos llegar a saber quiénes somos.
Pocas dudas nos pueden caber a estas alturas de que, los materiales de la Vida se “fabricaron” en las estrellas. Más tarde, cuando éstas llegaron al final de sus vida expulsaron el material complejo que se transformaron en grandes nebulosas de las que surgieron nuevas esdtrella, nuevos mundos, y, nuevas formas de vida en aquellos planetas que reunían las condiciones para ello.
Lo cierto es que tenemos una idea bastante aproximada de cómo pudo surgir la vida aquí en la Tierra pero, tampoco sabemos, a ciencia cierta, si su origen está en la propia Tierra, o, por el contrario, llegó desde fuera de ella. Lo que si sabemos con una claridad meridiana es que, los materiales necesarios para que la vida pudiera surgir, allá donde surgiera por vez primera, se transmutaron en las estrellas que, a partir del elemento más sencillo, el Hidrógeno, fusionó el Carbono, Oxígino, Nitrógeno y todos los demás de los que estamos hechos los seres vivos que pueblan la Tierra y -al menos para mí- otros muchos planetas del Universo.
En alguna ocasión hemos comentando aquí sobre el origen de la vida en nuestro planeta, la evolución, nuestros orígenes y algunos dones que nos adornan como el del habla y, sin olvidar el crecimiento de nuestro cerebro que ha posibilitado que “naciera” ¡la mente! Sin embargo, no nos hemos parado a pensar en algunos aspectos de la historia que nos llevarían a comprender cabalmente y que esa “historia de la vida” adquiera algún sentido, que la podamos comprender en todo su esplendor. Uno de esos aspectos, quizás el principal, sea la diversidad metabólica de los microorganismos procariotas, un aspecto clave para explorar la historia de “la vida primigenia”.
Convendría que profundizáramos más (y, asombremos) con las numerosas formas de metabolismos que utilizan los procariotas para vivir y que averigüemos donde encajan estos minúsculos organismos del árbol de la via antes de que podamos seguir escuchando las historias que paleontólogos nos puedan contar de sus andanzas a la búsqueda de fósiles que nos hablen de aquella vida en el pasado.
En la actualidad se acepta que los procariotas fueron los precursores de los organismos eucariotas. Sin embargo hay grandes diferencias entre esos dos grupos celulares. Una de esas diferencias reside en la organización génica y en los mecanismos de sintetizar el ARN mensajero. Algún trabajo biológico afirma que los eucariotas podrían proceder de cianobacterias termófilas ya que su organización génica recuerda rudimentariamente a la de los eucariotas.
Los organismos procariotas (bacterias y arqueas) y eucariotas (protistas, hongos, animales y plantas) comparten una bioquímica común, sin embargo difieren en un elevados número de procesos y de estructuras. A pesar de eso se considera a los procariotas como los precursores de la célula eucariota. A lo largo de los años se han ido recogiendo datos experimentales que avalan esta teoría.
Sabemos que la vida en sí m ismo empezó, quizás hace unos tres mil quinientos millones de años (así lo dicen fósiles encontrados en rocas de esa edad), cuando los flujos de energía, las moléculas y la información se combinaron para formar la primera célula viva. Desconocemos en qué consistió aquella primera fuente de energía, pero hace unos quinientos millones de años las células habían desarrollado ya una maquinaria que podía recoger la luz de la estrella más cercana a nosotros, el Sol, la fuente última de toda energía que existe en la Tierra. La luz se utilizaba para descomponer el agua (H2O), produciendo Oxígeno, que era emitido a la atmósfera, y liberando también protones y electrones que, al combinarse con el dióxido de carbono del aire, se utilizaban para formar las complejas moléculas de la vida. Este sencillo pero poderoso proceso de fotosíntesis hacia posible que la vida surgiera y se propagara rápidamente.
El oxígeno es necesario para la supervivencia de la mayoría de las especies vivas en la Tierra. Pero la atmósfera del planeta no siempre contiene esta sustancia imprescindible para la vida, y uno de los misterios más grandes para la ciencia es conocer cómo y cuándo comenzó inicialmente la fotosíntesis del oxígeno, el proceso responsable de la producción del oxígeno a partir de la fotsíntesis.
La primera contaminación global y los primeros desastres ecológicos tuvieron lugar hace dos mil millones de años, cuando el Oxígeno, ese residuo tóxico de la fotosíntesis, comenzó a concentrarse en la atmósfera terrestre. El Oxígeno, la sustancia fundamental de la vida animal, es una molécula relativamente inestable y tóxica. De hecho, en en sí misma un tipo de radical libre y puede arrebatar electrones a otras moléculas, descomponiéndolas para formar otros radicales libres aún más tóxicos. Es la razón por la que la mantequilla y otros alimentos se vuelven rancios, el hierro se oxida y algunos anumales mueren en una atmósfera de oxígeno puro.
De la relación del Oxigeno y nosotros podríamos hablar muy extensamente pero, nos salimos del tema que os quería comentar y que, a estas alturas está acabando. Por cierto, es incluso posible que el Oxígeno de nuestra atmósfera fuera un veneno para hipotéticos seres extraterrestres invasores y nos librara de ellos por el simple hecho de que éste, no podría nunca ser su mundo.
Mirando el árbol filogenético de la Vida, nos damos cuenta de su diversidad y complejidad y, además, podemos ver con toda claridad que nosotros, sólo somos una pequeña “ramita” en toda su estructura.
Es cierto que, con mucha frecuencia, aparecen aquí trabajos que versan sobre la vida, ese misterio que nos lleva a querer buscar sus orígenes y a saber, cómo y para qué surgió aquí en el Planeta Tierra. Nos interesamos por cada uno de pasos evolutivos y nos llama la atención ese larguísimo ciclo que llevó la vida desde aquella célula replicante hasta los seres humanos. Pero, ¿hay algo más interesante que la Vida para poder estudiarlo? Seguramente con la Biología, Física, la Química y la Astrofísica, cada vez sabremos un poco más sobre tan inmenso misterio.
Emilio Silvera
Ene
12
¡El origen de la Escritura! ¡El saber!
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (4)
La india continúa siendo el candidato con más posibilidades para albergar el honor del nacimiento de la escritura. Tradicionalmente se consideraba que la civilización más antigua de la región era la que tenía su enclave en el valle del Indo, cuyas capitales, Harappa y Mohenjo-Daro se remontan a unos 3.000 años a. de C.,y. los indicios y pruebas allí encontrados desplazan a Mesopotamia con la cuna de la escritura.
No soy ningún experto en este tema, sin embargo, si dependiera de mí, dejaría la respuesta en el aire y no descartaría tan rápidamente a Mesopotamia.
Por otra parte, ¿Qué se sabe de China?
La escritura china se caracteriza por su originalidad y riqueza, permitiendo un campo de la expresión artística de manera muy amplia por medio de los caracteres. La historia de la escritura china se remonta a más de tres mil años, en la dinastía de los Shang, tiempo en el que ha sufrido una profunda evolución.
El alfabeto más antiguo hasta ahora encontrado fue descubierto en una excavación realizada en Ras Shamra (Cabeza de hinojo), cerca de Alejandreta, extremo nororiental del Mediterráneo, entre Siria y Asia Menor. Allí, donde la colina que domina un pequeño puerto, se encontraba un asentamiento que en la antigüedad recibía el nombre de Ugarit.
Tanto en Mesopotamia como en Egipto el saber leer y escribir era algo muy apreciado, Shulgi, un rey sumerio de 2.100 a.C., se jactaba de que:
“De joven estudié e arte de la escriba en la Casa de las Tablillas, con las tablillas de Sumer y Acad; nadie de noble cuna puede escribir una tablilla como yo puedo.”
Los escribas eran formados en Ur desde por lo menos el segundo del tercer milenio a. de C. El rey Shulgi fundó dos escuelas, acaso las primeras del mundo, en Nippur y Ur.
Después de todo esto, algunos miles de años más tarde, llegó la idea de ciencia (scientia significaba originalmente conocimientos). Por lo general, se cree que este ámbito de la actividad humana, sin duda muy provechoso, nació en Jonia, que entonces abarcaba la franja occidental de Asia Menor (la moderna Turquía) y las islas ubicadas frente a ella. Según Edwin Schrödinger, hay tres razones principales por las que la ciencia haya comenzado allí:
En primer lugar, la región no pertenecía a ningún estado poderoso, que normalmente se mostraban hostiles hacia el pensamiento libre.
En segundo lugar, Jonia era un pueblo de marineros, ubicado entre Oriente y Occidente, y con sólidos vínculos comerciales.
El intercambio mercantil ha sido siempre el principal motor para intercambiar ideas entre pueblos diferentes, y que surgían de la necesidad de resolver problemas prácticos.
Aquí mismo, en nuestra región, tenemos una muestra de ello, nos visitaron griegos, fenicios y otros pueblos que, un solo comerciaron con nosotros, sino que nos trajeron técnicas artesanales, de navegación, y un fin de ideas sobre otros aspectos de la vida en sociedad.
En tercer lugar, la región no estaba “infestada de sacerdotes”; no había, como en Babilonia o Egipto, una casta sacerdotal hereditaria y privilegiada con un interés personal en el mantenimiento del statu quo.
Al comparar los orígenes de la ciencia en la antigua Grecia y la antigua China, Geoffrey Lloyd y Nathan Sivin sostienen que los filósofos y científicos griegos gozaron de menos patrocinio que sus contemporáneos chinos, a quienes el emperador empleaba. Sin embargo, esto hizo que los científicos chinos fueran parcos en sus opiniones que se aferraban a lo ya conocido y eran menos dados, que sus colegas griegos a adoptar nuevos conceptos:
Tenían mucho más que perder, y rara vez discutían como hacían estos. En lugar de ello, los pensadores chinos invariablemente incorporaban las nuevas ideas en teorías existentes, con lo que producían una “cascada” de significados; de esta manera las naciones nuevas tenían que enfrentarse abiertamente con las ya existentes.
En Grecia, lo que había en realidad era una “competición de sabiduría”, bastante similar a los que celebraban en el deporte mismo que por aquel entonces se consideraba como una forma de sabiduría del dominio del cuerpo.
Los jonios comprendieron que el mundo era algo que podía ser comprendido, si uno se tomaba la molestia de observarlo de forma adecuada. No era un patio de recreo donde los dioses manejaban arbitrariamente el destino de los humanos según su estado de ánimo del momento, animados por las pasiones de amor, de ira o por un deseo de venganza, más humano que divino. Este descubrimiento dejó asombrados a los jonios: se trataba, como subrayó Schrödinger, de algo “completamente nuevo” que dejaba inservibles creencias ancestrales.
Los babilonios y los egipcios sabían mucho sobre las órbitas de los cuerpos celestes, consideradas secretos religiosos.
Encontramos al primer científico verdadero, Tales de Mileto, sabio de una ciudad de la costa jónica, en el siglo VI a. de C. Tales, aunque no fue el primero, especuló sobre el origen del Universo y la naturaleza, sin embargo sí fue el primero que expresó sus ideas en términos lógicos, dejando a un lado la mitología, y, además, fue el primero en descubrir la verdadera importancia del agua para la existencia de la vida.
En el año 585 a.C., el filósofo y matemático griego Tales de Mileto realizó una asombrosa predicción al advertir que la Luna cubriría al Sol y la oscuridad aparecería durante el día. Basada en la observación racional del cosmos dedujo que un eclipse solar ocurriría durante una importante batalla entre dos reinos.
En Egipto aprendió matemáticas y astronomía babilónica para poder predecir un eclipse total de Sol en el año 585 a.de C., eclipse que ocurrió a su debido momento el día correspondiente a nuestro 29 de mayo (dos siglos más tarde, Aristóteles consideraría que este acontecimiento marcaba el inicio de la filosofía griega), sin embargo, Tales es recordado más a menudo por una pregunta que formuló: ¿de qué esta hecho el mundo? Él, equivocado, se respondió a sí mismo, diciendo que el mundo estaba hecho de agua, y, aunque no acertó, si cambió el concepto de que el mundo estaba hecho por los dioses. Este cambio marcó un hito en la historia del pensamiento, aunque entonces, afectara a un número muy reducido de personas.
El sucesor inmediato de Tales, otro jónico llamado Anaximandro, abundo en exponer nuevas ideas que, aunque no todas acertadas, si hicieron pensar a los cultos de su tiempo, aunque sólo fuera para rebatirlas. Anaximandro lanzó la idea de que la realidad última del Universo no podía ser una sustancia tangible (una idea que no estaba tan lejos de la verdad, como se descubriría mucho más tarde).
Todas las ideas profundas que surgieron por aquella época, eran sometidas a un debate cuyo final era el avance de los conocimientos de toda la humanidad.
Los elementos de Empédocles: Aire, tierra, fuego y agua
Postuló que la materia la componían partículas pequeñísimas e intransformables (átomos), pero decía que no todas eran distintas, como suponía su contemporáneo Anaxágoras, sino que todas estaban formadas por cuatro elementos: fuego, agua, tierra y aire.
Demócrito expuso: “El universo entero está compuesto por un espacio ilimitado en el que existen innumerables átomos. El espacio no tiene límites, no tiene ni un arriba ni un abajo, no tiene un centro ni frontera. Los átomos no tienen cualidades, aparte de su forma.
El teorema de Pitágoras establece que, en todo triángulo rectángulo, la longitud de la hipotenusa es igual a la raíz cuadrada de la suma del área de los cuadrados de las respectivas longitudes de los catetos.
Euclides fue un matemático histórico que escribió los Elementos y otras obras atribuidas a él. Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso firmando los libros con el nombre de Euclides después de su muerte.
Heráclito fue uno de los primeros filósofos presocráticos que, como los demás, trató de identificar la causa primera de la creación del mundo. Rechazó las teorías anteriores, como la del aire y el agua, y afirmó que el fuego era la causa primera, ya que creaba y destruía.
Empédocles, con sus elementos; Demócrito, con su átomo; Pitágoras, con su teorema; Euclides, y su geometría axiomática; Heráclito, que intuyó que la órbita de los planetas eran todas “errantes”; Leucipo, que como Demócrito creyó que el mundo estaba compuesto por infinidad de diminutos átomos que se movían de forma aleatoria en un “vacío infinito”; Anaxágoras de Clazomene, creyó en los argumentos de los atomistas y en la existencia de una partícula fundamental; Homero, que en su Iliada y Odisea nos habló de plagas y ofreció con cuidadosa descripción el tratamiento de las heridas, evidenciando del saber especializado en este campo; Hipócrate de Cos, meticuloso observador que separó la medicina de la filosofía. Fue famoso por su juramento cuya principal característica estaba en la de colocar al paciente siempre en primer lugar, lo más importante.
El nacimiento de la reflexión jónica, lo que algunos estudiosos llaman el positivismo jónico o la ilustración jónica, ocurrió de forma dual: la ciencia y la filosofía. Tales, Anaximandro y Anaxímenes, fueron los primeros filósofos y también los primeros científicos.
De la serie Rumores del saber del Mundo, os dejo aquí una breve muestra, ya que, esbozar un escenario co9mpleto de todo lo que aconteció en nuestro mundo en la Historia de la Humanidad…. ¡Resulta imposible!
Emilio Silvera Vázquez
Ene
12
Naturaleza, Simetría, Belleza. II
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
¿Por qué se forman y repiten esas figuras una y otra vez, y, en cada caso, una es la “copia exacta” de todas las demás de su género? ¿Es posible que el hombre, al contemplar tales maravillas comenzara a hacer preguntas y diera lugar al nacimiento de la Ciencia? Las matemáticas comenzaron por el asombro que despertaban las formas geométricas y de la misma manera, nacieron los primeros problemas de la física clásica centrada en las órbitas de los astros y las trayectorias de proyectiles.
La geología estudia la forma de las piedras y volcanes y la biología se ocupa de las formas de los seres vivos y de como ésta ha ido cambiando a lo largo del tiempo. Pero, ¿Cómo explicar los mecanismos que crean el aspecto exterior de la realidad que podemos percibir? ¿Y por qué existen las mismas estructuras tanto en los organismos vivos como en el mundo inanimado?
Observamos la Naturaleza y podemos contemplar formas armoniosas y elegantes, entendiendo que son cuerpos bellos y simétricos en todas sus versiones. Por ejemplo, a mí siempre me llamó la atención la simetría por traslación que se puede encontrar en la disposición de las hojas.
Si nos fijamos y analizamos como se van desarrollando hacia la extremidad de su rama, aparecen con la misma forma inicial. Un asimetría que está presente en los organismos que cuentan con una estructura en la que se repiten segmentos iguales, con los mismos aparatos y los mismos órganos, como el trilobites, fósil del Paleozoico (lombriz y sanguijuela), y algunas plantas.
En cambio la simetría por rotación se encuentra en los pétalos de una flor o en los tentáculos de una medusa: aunque sus cuerpos roten, permanecen iguales. No debemos olvidar la simetría bilateral que hace que los lados derecho e izquierdo sean iguales y se presenta en casi todos los animales, incluido nosotros. Pero es uniendo estos aspectos cuando se obtienen figuras realmente armoniosas. Si se trata de desplazamiento y rotación en un mismo plano hablamos de una espiral, mientras que en el espacio sería una hélice, aunque ambas se encuentran por todas partes en la naturaleza.
Las simetrías se generan mediante las fuerzas que actúan sobre los cuerpos, descritas por leyes rigurosas e inequívocas, como una fórmula matemática y dependen de la existencia de fuerzas distintas que actúan en diversas direcciones. Si éstas permanecen en equilibrio, no hay preferencia alguna hacia arriba o abajo, a la derecha o a la izquierda, y los cuerpos tenderán a ser perfectamente esféricos, como suele ocurrir en el caso de virus y bacterias. Además, cuando el aspecto no es el de una esfera perfecta, la Naturaleza hará todo lo posible para acercarse a esta forma.
En todo esto, y, para que así ocurra, tiene que estar presente la Gravedad. Veamos:
Parémonos un momento en la gravitación y generalicemos el concepto de simetría, ampliándolo a las fórmulas matemáticas. Veamos la fórmula de Newton, pero expresándola con palabras, de esta manera: la fuerza de atracción entre dos cuerpos es proporcional al producto de dos términos: el primero es la masa de un cuerpo dividido por su distancia al otro. El segundo término es la masa del otro cuerpo dividido por su distancia al primero.
Con símbolos matemáticos escribiríamos:
F(M/d) × (m/d)
Es la misma fórmula de siempre, pero la hemos puesto así para visualizar que la gravitación se puede expresar con una fórmula bastante simétrica: los dos términos de la derecha de la ecuación son “casi” simétricos ¿no es verdad?
¿Has oído sobre el número de oro o proporción áurea? Parece una fórmula mágica para diseñar elementos que parezcan más estéticos. El Número de Oro, también conocido como número áureo o zona áurea (entre otras denominaciones) es una muy interesante relación matemática que se presenta en la naturaleza y que crea interesantes armonías visuales.
Si bien no podemos asegurar que, por ejemplo Da Vinci usó la proporción áurea para pintar la Mona Lisa, basta un búsqueda en Google para darte cuenta de la cantidad de obras que parecen coincidir con esta proporción.
Se trata de una secuencia numérica. Veamos si identificas la relación entre estos números: 0, 1, 2, 3, 5, 8, 13, 21, etc.
¿Encontraste la relación? En esta sucesión, un número es el resultado de la suma de los dos números anteriores. Por ejemplo 3, es el resultado de 1+2; 8 es el resultado de 3+5.
Este concepto más general de simetría es muy profundo, porque nos lleva a pensar que la Naturaleza y las leyes físicas que la describen también obedecen a las leyes de la simetría, igual que la materia, en sus manifestaciones externas, las obedece en muchos casos.”
Algunos ven hasta en el surrealismo la simetría
¿Sería posible que la simetría material tuviera un paralelismo en la abstracción intelectual que son las leyes físicas? Desde luego hace falta un esfuerzo mental considerable para pasar de lo material a lo intelectual, pero cuando se profundiza en ella, la conexión aparece.
En la naturaleza existen muchas cosas que nos pueden llevar a pensar en lo complejo que puede llegar a resultar entender cosas que, a primera vista, parecían sencillas. Me explico:
Hay más sobre el mismo tema que no es este el lugar para extenderse hasta el infinito, con los datos expuestos en la primera parte y en esta segunda, como referencia ews más que suficiente para 6tener una idea de la importancia de la simetría en la Naturaleza.
Emilio Silvera Vázquez
Ene
11
El paso del Tiempo lo cambia todo
por Emilio Silvera ~ Clasificado en Entropía ~ Comments (6)
Hay en todas las cosas un ritmo que es de nuestro Universo.
“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede encontrar ese ritmo en la sucesión de las estaciones, en la en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la Princesa Irulan en DUNE
Laboratorio estelar, la cuna de los mundos
Me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.
https://youtu.be/4KSlLqSz2aI
El Universo que, para nosotros es… ¡Casi infinito!
Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.
Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo, y, dónde tiene su origen
Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, tiene la particularidad de ser invisible pero emite Gravedad…. (¿)
Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
Isaac Asimov en uno de sus libros nos explicó que, los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.
Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.
los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.
Descubrimiento del núcleo
El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.
1,41 g/cm³, esa es la densidad dentro del Sol
Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Las estrellas más normales y abundantes tienen 2 – 3 masas solares, y, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.
El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.
La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!
Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.
Poemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.
Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).
Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.
Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.
Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.
Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando
Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.
Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra ubicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.
Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.
Distintos final tienen las estrellas muy masivas. Todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba (una gigante roja) que podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa, las estrellas se convierten en enanas blancas -el caso del Sol, en la imagen-, en una estrella de neutrones o Agujeros negros.
La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.
La presencia de la Luna, hace que las mareas oceánicas se muevan invadiendo las costas y alejándose
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.
Todo cuerpo material existente en el espacio, atrae a todos los demás y, dependiendo de las distancias que los separen, así incidirán los unos en los otros.
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de desacelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.
Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.
En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.
El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).
Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.
Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.
Entropía termodinámica
El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.
Degradación
De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.
Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.
Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre
Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.
Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. La regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”
Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.
¿Está degradándose el universo?
Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación: S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.
Pero esa, es otra historia.
Emilio Silvera Vázquez
Ene
11
El inexorable paso del Tiempo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Lo que no induce a la duda es el hecho de que, con el paso de Tiempo, lo que hoy es, mañana no será. Todo cambia a peor con el paso del Tiempo, la entropía aumenta. Lo hemos visto en la evolución de las estrellas. Si observamos el nacimiento, vida y muerte de una estrella como el Sol, vemos como a medida que aumenta el consumo de material de fusión, se convierte en Gigante roja, continúa desprendiéndose de las capas exteriores para formar una nebulosa planetaria, y, el resto de la masa, comienza a ser densificada por la fuerza de Gravedad que tan ingente masa genera. Llega a un punto que el Principio de exclusión de4 Pauli para los Fermiones (los electrones son fermiones, los neutrones son fermiones,,,,), hace que los electrones se degeneren y, finalmente, la fuerza de Gravedad es frenada y lo que ha quedado es una estrella enana blanca que, irradiando furiosamente en el ultravioleta, ioniza a la Nebulosa planetaria.
Así, en todos los sistemas cerrados (una estrella lo es, y, también nosotros mismos a nivel individual), la Entropía aumenta.
“La entropía demuestra que la vida es una excepción maravillosa. La vida va en contra de la ley de la entropía, que predice la tendencia del Universo a destruirse de una forma natural e inevitable. Hace tiempo se especulaba con la posibilidad de que todos los procesos del Universo fueran reversibles. Los péndulos iban y venían, los objetos caían hacia la tierra o subían impulsados. Aparentemente cualquier proceso físico podía darse la vuelta y realizarse al revés. Si esto era así, existiría una simetría de acciones que haría que el Universo permaneciera por siempre en una balanza de sucesos que van y vienen, sin que existiera un final en el que los procesos se acabaran. Sin embargo, el hombre se dio cuenta de que había al menos dos circunstancias que no parecían ser reversibles: por un lado el calor siempre fluye de lo más cálido a lo más frío y nunca al revés, y por otro lado, la fricción siempre genera calor pero no en sentido contrario. Implicaba que los procesos seguían una dirección y que no podían volver atrás. Quizás, todo lo que sucediera espontáneamente en la naturaleza no fuera reversible, se pensó, y significaba que el Universo iría de un estado inicial a uno final. Un camino que podría ser muy, muy largo pero que, inevitablemente, le haría llegar a su agotamiento.
Para poner todas estas observaciones en claro, se formuló un principio que hasta el día de hoy se demuestra devastador para las esperanzas del concepto de eternidad. Se denomina como Entropía a la transformación. Además, se predijo que esta magnitud de cambio en cualquier proceso natural, existiría inevitablemente. Así se había condenado al Universo a un final inapelable dado que los procesos serían irreversibles sucediendo siempre en la misma y única dirección. Pocos años después el austríaco Ludwig Boltzmann relacionó la entropía con el grado de desorden que contiene un sistema. Por tanto, cualquier proceso que se dé en la naturaleza es para producir mayor desorden, lo que conlleva un inevitable y caótico final. Entre tanto pesimismo, la vida en la Tierra lleva unos cuatro mil millones de años intentando ordenar el mundo. La simple creación de una hormiga supone la organización de millones de células y componentes químicos. Pero la plenitud del orden es la humanidad. Sus cuerpos, sus pensamientos y sus actos son un monumento al orden. Es cierto que el balance es negativo: cada vez que un humano intenta ordenar algo es a costa de un desorden mayor en alguna otra parte. Somos, la vida y los hombres una maravillosa excepción y, mientras estemos aquí, tenemos una misión: Luchar contra la entropía.”
“En termodinámica, la entropía (simbolizada como S) es una magnitud física que permite, mediante cálculo, determinar la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (?ντροπ?α) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850;1 2 y Ludwig Boltzmann, quien encontró la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.”
Todo en el Universo, sin excepción (si es un sistema cerrado), verá como aumenta su Entropía y se va perdiendo la capacidad de trabajo. El mismo Universo evolucionará hacia ese escenario, llegará el momento en el que las estrellas dejarán de brillar y ni los átomos se moverán, estará presente el Cero Absoluto (-273,15 ºC).
“Según el tercer principio de la termodinámica, el cero absoluto es un límite inalcanzable. En septiembre de 2014, los científicos de la colaboración CUORE en el Laboratori Nazionali del Gran Sasso en Italia enfriaron un recipiente de cobre con un volumen de un metro cúbico a 0.006 K (−273.144 °C) durante 15 días, estableciendo un récord para la temperatura más baja registrada en el universo conocido sobre un volumen contiguo tan grande. La dificultad para llegar a una temperatura tan baja en una cámara de enfriamiento es el hecho que las moléculas de la cámara, al llegar a esa temperatura, no tienen energía suficiente para hacer que esta descienda aún más.”
Gráficos de presión en función de la temperatura para tres muestras de gas diferentes en el mismo volumen extrapolado al cero absoluto.
Condensado de Bose-Einstein en un átomo de rubidio. El color rojo indica una velocidad elevada, y el blanco-azulado una baja velocidad. La imagen de la derecha es la muestra más fría de las tres.
Al aproximarse al cero absoluto se pueden producir en algunos materiales ciertos fenómenos, como el condensado de Bose-Einstein, o algunos superfluidos como el Helio II.
Así que si se llega al Cero Absoluto (cosa que no será nada fácil), se habrá alcanzado la Temperatura más baja posible, y, en esa situación, ni las moléculas se moverían, lo que hace que el problema sea muy grave para todo aquello que esté hecho de materia… ¡Sería la muerte térmica!