Dic
14
¿Dónde están las respuestas?
por Emilio Silvera ~
Clasificado en El saber: ¡Ese viaje interminable! ~
Comments (0)

Tengo la sensación de que podrán tener cualquier forma. Sin embargo









El experimento de la rendija doble fue diseñado por Thomas Young en 1801
¡Son posibles tantas cosas! En las colisiones protón-protón en el LHC, una de las reacciones que se pueden producir es una interacción entre dos gluones que decaen a un par de quarks top-anti-top (t¯t) y a un mediador que se desintegra en un par de fermiones de DM
Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”
Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.
Sus últimos 30 años los dedicó a buscar la Teoría del Todo. Sus ecuaciones se exponían en un escaparate de la Quinta Avenida de Nueva York, La Gente se amontonaba para verlas sin entender una palabra de lo que allí decían los signos
“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasión los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo.

Una Teoría que nos de todas las respuestas… ¿Cómo encontrarla?
La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”
Einstein se pasó los últimos treinta años de su vida en la búsqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.
Einstein buscaba una teoría unificada que pudiese extender la relatividad general y proporcionar una alternativa a la teoría cuántica. Científicos de todo el mundo siguen trabajando por conseguir una unificación en forma de una teoría completa que proporcione una descripción completa de las cuatro fuerzas fundamentales de la naturaleza. No lo consiguió y, hasta el Presente, nos quedamos con el Modelo Estándar de la Física de partículas y solo tres de las fuerzas fundamentales. La Gravedad, díscola ella, no quiere juntarse con las otras fuerzas.
El Modelo Estándar
Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.
El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas. Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.
Nuestras Mentes son poderosas pero… Limitadas
La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.
“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace. Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales: las fuerzas gravitatoria, electromagnética, nuclear fuerte y nuclear débil.”
Stephen Hawking
Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.
El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber
La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.
Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.
Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.



Accede al artículo original espacioprofundo.es/2013/01/11/einstein-tenia-razon-el-espacio-tiempo-es-una-estructura-suave/ © Espacio Profundo
El telescopio espacial James Webb capta un signo de interrogación en el Espacio Profundo.
Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.
La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.
Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.
El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.
Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.
Pero… ¿somos en verdad tan insignificantes
Emilio Silvera V.
Dic
14
Lo que podría Ser
por Emilio Silvera ~
Clasificado en General ~
Comments (3)
LUCY, la película que nos lleva a un viaje que nos muestra la fantasía de lo que podría alcanzar el cerebro humano mediante ciertos tratamientos que posibilitarían su máxima prestación. En ese Estadio, nada resultará imposible de conseguir, y, entonces podremos decir con propiedad que, la materia, alcanzó su grado máximo alcanzando y uniéndose a la Conciencia Cósmica del Universo-.
La historia que nos cuenta la película LUCY, es de pura fantasía, no se concibe que unas drogas potentes de nuevo diseño haga evolucionar al cerebro hasta el punto que aquí nos muestran. A nivel cerebral, las drogas actúan sobre los neurotransmisores alterando y perturbando el correcto funcionamiento afectando a la conducta, estado de ánimo o percepción. Además, son susceptibles de crear dependencia física y/o psicológica. Todo lo contrario de lo que nos muestra la película que, por otra parte, no es un buen ejemplo para mentes poco formadas que pueden confundir el mensaje y caer en el pozo del que casi nunca se puede salir.
Sabemos que nuestra Mente es una maravilla, también sabemos que, el Universo se expande y nuestras Mentes también lo han hecho, el paso del Tiempo, lo que vamos viviendo, la observación, el estudio de las cosas en las distintas disciplinas del saber humano, la Ciencia en General, nos ha llevado a un nivel muy aceptable del conocimiento del mundo, de la Naturaleza, del Universo en fin.
No será la droga el camino para poder elevar el nivel de la Mente hasta cotas insospechadas, lo que hace que la Mente se alimente y evolucione es el Tiempo, su inexorable transcurrir nos permite ir comprendiendo, y, mientras nuestros cerebros asimilan cuestiones complejas, va envejeciendo y (es ley de vida), dejamos paso a otros que detrás de nosotros vendrán. Siempre ha sido de esa manera y lo seguirá siendo.
Hay procesos que, si tratamos de hacerlos avanzar contra los principios naturales… ¡Puede llegar el desastre y desandar el camino ganado.
¿Drogas? No gracias.
Emilio Silvera V.
Dic
13
La Ignorancia supera al conocimiento
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (0)
El efecto Dunning-Kruger
Lo peor de todo es desconocer que somos ignorantes, lo que nos lleva a creernos inteligentes, y, un ignorante que cree saber… ¡Es un peligro!
“¿Sabias que las personas con menos competencia en un área tienden a sobreestimar su habilidad de manera inconsciente? Si quieres saber más sobre este fenómeno.”
Las preguntas siguen siendo más que las respuestas
Al menos de momento, tenemos que admitir que es así. No creo que nunca podamos adquirir un conocimiento pleno de todas las cosas. Siempre nos quedarán secretos que desvelar y misterios por descubrir, y, la inmensa variedad, la vastedad compleja de la diversidad de la Naturaleza, tendrá siempre para nosotros, algunos rincones oscuros en los que moran respuestas que deseamos oir, y que, sin embargo, posiblemente, nunca podremos escuchar.



¿Oiremos alguna vez que han encontrado los restos de la Atlántida?
Al hombre por naturaleza le ha intrigado aquellos sucesos a los cuales no encuentra una explicación lógica, y cuando sus respuestas no son las adecuadas, las ha convertido en misterios, leyendas o mitos pero, con el paso del tiempo, poco a poco, fue dejando de lado la mitología y a las divinidades para emplear la lógica y la observación del mundo, y, más tarde, llegó el experimento: la Ciencia había nacido.
Uno de los misterios más grandes se refieren a nosotros mismos, de manera fidedigna, no sabemos lo que pasó para que ahora podamos estar aquí. El cráneo de Lucy y unos huesos diminutos , cuidadosamente dispuestos en una vitrina del museo para su exhibición al público, nos pueden transportar hasta la cálida sabana africana en la que, según todos los indicios, se gestó la Humanidad hace unos tres millones de años.


Nebulosas hacedoras de mundos en las que, nacen estrellas nuevas y se transmutan los elementos sencillos en complejos, en ellas y en las estrellas surge el CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno) que son materiales esenciales para la vida.

![]()
Si viajamos hacia atrás en el tiempo esos tres millones de años, podríamos contemplar, con asombro, a nuestros primeros antepasados. Los dinosaurios nos llevan a un tiempo de veinte a setenta veces más antiguo, a unos bosques mesozoicos por los que discurren bestias prodigiosas.


¿Qué habría pasado en la historia de la evolución si no hubiera caído aquel meteorito?
Claro que es mucho lo que aún desconocemos de la historia de la vida y, de la misma manera, se podrán expresar nuestros nietos, no es una asignatura de fácil comprensión, ya que, no teníamos aquí a un historiador recopilando todo lo que pasó, ni el tiempo que ha transcurrido nos permite encontrar las huellas necesarias que nos den una respuesta completa.
Claro que, a pesar de todo, incluso con esos enormes inconvenientes de la falta de pruebas, la historia de la Vida, es una narración tan apasionante que, seguimos y seguiremos buscando indicios del pasado que nos hablen de lo que pasó, de nosotros y de otros seres que, como nosotros mismos, surgieron a la vida tras un complejo proceso evolutivo del que, al parecer, sólo nosotros alcanzamos un nivel de consciencia superior.

La historia de la vida solemos relatarla al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces…y, así, sucesivamente, Claro que tales listas de conocimientos adquirido pueden ser memorizadas pero, no dejan mucho espacio para pensar que, en lugar de recitar como un papagayo esas cuestiones, es mejor, salir a espacios abiertos y a lugares remotos del planeta en los que, los vestigios e indicios nos digan que allí pasó algo, donde podamos encontrar rocas viejas y fósiles que sí, de manera fehaciente, nos hablaran de ese pasado que queremos conocer.

Los actuales descubrimientos de la Paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.
Las pistas geológicas sugieren que la roca espacial que creó el cráter de Chicxulub fue un meteorito de condrita carbonácea que se formó en la parte exterior de nuestro sistema solar.
Pero, ¿Cómo podemos llegar a comprender acontecimientos que ocurrieron hace unos miles de millones de años? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta entender cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.
En tanto que empresa humana, está es también la historia de la exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior del espacio interestelar y de los planetas como Marte.
:format(jpg)/f.elconfidencial.com%2Foriginal%2Fd63%2Fe3b%2F9a7%2Fd63e3b9a7d5d16039e403940ed82911a.jpg)
Muchas de las imágenes del planeta Marte, nos hablan de secretos que…
Muestras recogidas en Marte nos podrán hablar de qué aspectos de nuestra biología terrestre se pueden encontrar allí donde existe la vida, existió la vida o, ¿Quién sabe? existirá. Seguramente en Marte podremos encontrar, para nuestro asombro, productos específicos de nuestra particular historia que yacen allí para darnos una respuesta pero, el camino que hemos de seguir para buscar la vida en el Universo dependerá, en gran medida, de lo que podamos encontrar en nuestro “barrio”: Marte, Encelado, Europa, Titán, Ganímedes y otros pequeños mundos que, cuando les dedicamos una profunda mirada, nos envían promesas que, no podemos desatender.
Todo comenzó por aquella primera célula replicante surgida hace ahora 3.800 M de años
Uno de los temas más claros en la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos la de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental. Pero la historia de las asociaciones -de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas del funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.
Otro de los grandes temas es el de la coevolución de la Tierra y la Vida. Tanto los organismos como en Ambiente han cambiado drásticamente con el tiempo, a menud de forma concertada. Los cambios del clima, la geología e incluso la composición de la atmósfera y de los océanos han influido en el curso de la evolución, del mismo modo que las innovaciones biológicas han influido, a su vez, en la historia del medio ambiente.

Los científicos saben que, la Vida, nació por mediación de procesos físicos -tectónicos, oceanográficos y atmosféricos- estos mismos procesos antes mencionados, sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra.
Por fin la vida se expandió y diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.
Creo que, el surgimiento de la vida como una característica definitoria de nuestro planeta es algo que, no podemos calificar con una palabra menor a la de un hecho extraordinario y fantásticamente asombroso.
¿Cuántas veces habrá ocurrido lo mismo en la vastedad del Universo?
Emilio Silvera Vázquez
Dic
13
El paso del Tiempo lo cambia todo
por Emilio Silvera ~
Clasificado en Curiosidades ~
Comments (2)
La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la super-fluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un super-átomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones. Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado
cuántico (al contrario de lo que ocurre con los bosones).

Generan en el Espacio el quinto estado dela materia
De esa manera, el condensado de Bose-Einstein, es un fenómeno que ocurre en los sistemas macroscópicos consistente en un gran número de Bosones a temperaturas suficientemente bajas, en el que una fracción significativa de esas partículas ocupan un único estado cuántico de energía más baja (el estado fundamental). Así que el condensado de Bose-Einstein sólo puede ocurrir para los Bosones, toda vez que para los fermiones, el Principio de esclusión de Pauli no lo permite, por lo que no hay fenómenos análogos de condensación para estas partículas.

El efecto túnel ocurre cuando un electrón puede atravesar una barrera de potencial lo que estaría prohibido en física clásica ya que el electrón rebotaría como una pelota de frontón. Esto es posible debido al carácter ondulatorio del electrón. La mayor parte de la electrónica tiene su base en el efecto túnel.
Como otras tantas veces aquí, comenzaré hablando del átomo de Carbono que, para mí, es el más importante de todos al ser el que posibilita la vida tal como la conocemos.

El átomo de carbono
La química de los compuestos que contienen carbono se denomina química orgánica. Originalmente se la llamaba así porque se creía que solo los organismos vivos podían fabricar o poseer estos compuestos.
Los compuestos orgánicos se basan en el carbono combinado con otros átomos de carbono y con otros elementos como el hidrógeno, el nitrógeno, el azufre , etc. Formando grandes estructuras con distinta complejidad y diversidad, el átomo de carbono puede
unirse a otros átomos de carbono formando largas cadenas las cuales pueden ser lineales, ramificadas o bien cíclicas. Se han aislado miles de compuestos de carbono de varios sistemas biológicos, aquí algunos ejemplos:

Esquema de una estrella tipo Sol
Hoy en día, disponemos de dos herramientas muy potentes para el estudio del interior solar: Los neutrinos solares y la helio-sismología. Bethe y Chitchfield (1938) propusieron un ciclo de reacciones de fusión nuclear para explicar la generación de energía en el caso de estrellas de masa pequeña como el Sol. El balance final de dicho ciclo de reacciones, Ciclo p-p, es:
4p → He4 + 2e+ +2ѵe +energía.
¿Cómo podemos estar seguros de que este es, efectivamente, el mecanismo dominante de generación de energía que utilizan algunas estrellas y, en particular el Sol? Sorprendentemente, la respuesta es que podemos “observar” el interior del Sol mediante detectores situados en el interior de la Tierra.


Cuerdas vibrantes que emiten las partículas de la materia

Laboratorio estelar, la cuna de los mundos.
me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese éter que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y que, de momento
, sólo sabemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.
Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como
si de un faro se tratara, y, objetos de enormes masas y densidades infinitas que no dejan escapar ni la luz que es atrapada por su fuerza de gravedad.
Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo
Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe también
una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.
Pensemos por ejemplo que un átomo tiene
aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
Isaac Asimov en uno de sus libros nos explicó que, los sólidos ordinarios, el denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho toneladas.
NGC 4563 es una galaxia elíptica ubicada en la constelación de Como Berenice (Cabellera de Berenice), descubierta por Heinrich Louis d’Arrest en 1864, y es un objeto del cielo profundo catalogado dentro del Catálogo General (NGC).
La enana blanca irradia en el furioso ultravioleta, de manera que ioniza todo el material de la Nebulosa y saca los colores de acuerdo al elemento que conforma ese material.
Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.
Pero
los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene
un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar el punto de desplazar todos los electrones y dejar a los núcleos atómicos en mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto
, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

Una enorme densidad en el núcleo de la enana blanca. Su densidad llega a ser enorme: un pedazo de materia del centro de una enana blanca del tamaño de un terrón de azúcar pesaría fácilmente cien toneladas en la superficie terrestre.
El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como
los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes
que todos los protones tienen carga eléctrica positiva y se repelen sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un enorme número
de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Estas estrellas se forman cuando
las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte
), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta
que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen seis. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene
.

La densidad global del Sol hoy día es de 1’41 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!
Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se puede
ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.
Poemos decir que objetos tan fascinantes como
éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta
cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos.
Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada
segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta para
mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor, también
parte
del Universo, al mismo tiempo que hace posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar.
Nadie diría que con este
consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas.
Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.
Para
completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número
dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.
![V1647 Orionis. (Foto: Goddard Space Flight Center) [Img #9400]](http://noticiasdelaciencia.com/upload/img/periodico/img_9400.jpg)
Este podría ser nuestro Sol cuando
en el pasado sólo era una protoestrella que se estaba formando
Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado
radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio desde
el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.
No quisiera estar cerca de una d estas protuberancias del sol
Por otra parte
, el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra para
unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.
Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá. Para cuando eso vaya a suceder… ¡Ya no podemos estar por aquí!
Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante
su larga vida. Dependiendo de su masa, las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este
, estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada
mil años.
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos
notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como
nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de decelerarse hasta
el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.
Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde
el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este
planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

También esto es Entropía (desastre)
En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede
ser convertida en cuando dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo
a partir de energía consiste precisamente en aprovechar este flujo.
El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos
energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta
el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).
Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede
realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar trabajo
, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Esta
imagen que lleva el de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en (Huelva) España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters
Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito
de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.
El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para
representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es cada
vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada
vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.
Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta
que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre
Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía desde
puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el nombre
de “termodinámica”, que en griego significa “movimiento de calor”.
Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta
regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía puede
quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos
básica, y que denomina “segundo principio de la termodinámica.”
Según este
segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.
¿Está degradándose el universo?
Bueno, el universo como sistema cerrado y por acción de la Entropía, sí se está degradando
Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación: S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para
el logaritmo es el siguiente: S es la entropía de un Sistema; W el número
de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre
el micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.
Pero esa, es otra historia.
Emilio Silvera Vázquez
Dic
13
El viaje de irás y no volverás
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Todos los escenarios que nos “dibujan” en relación al futuro de la Humanidad… ¡Resultan poco amables (por decirlo de manera suave)
Todo gura alrededor de las enormes Distancias que nos separan de otros mundos y del Tiempo necesario para poder alcanzar el objetico.
El cuerpo humano no “muta”, pero sí sufre cambios fisiológicos profundos y a veces negativos por la hibernación inducida (que no es natural en humanos) y la ingravidez prolongada, incluyendo atrofia muscular, pérdida ósea, problemas circulatorios y alteraciones celulares, ya que el organismo no está adaptado a la falta de gravedad ni a un metabolismo tan lento, lo que requiere una rehabilitación intensa al volver a la Tierra o a gravedad normal.
:format(jpg)/f.elconfidencial.com%2Foriginal%2F997%2Fc59%2F07e%2F997c5907ecdd56e6df7128dac424d6c4.jpg)
El vacío del Espacio Interestelar no es el medio adecuado para la física humana, no es el medio ideal para nuestros cuerpos y el funcionamiento normal de los distintos órganos que, ante tales anomalías, los deteriora y finalmente los “castiga” hasta el punto de que dejan de funcionar, lo que es mortal para nosotros.
Las distancias del Universo no son Humanas
Llegar a este mundo, situado a 24 años luz de la Tierra, nos costaría miles de años de viaje ¿Cómo podríamos soportar eso?
Es cierto, hablamos de ellas, de las distancias que nos separan de este o aquel objeto espacial, y, reseñamos en la pizarra o la libreta el guarismo que trata de significar la distancia a la que nos encontramos de aquel objeto celeste. Mencionamos Unidades Astronómicos, Parsecs, Kilo-parsecs y Mega-parsecs.. y años luz.
![]()
Se denomina escalera de distancias cósmicas a la sucesión de distintos métodos para realizar medidas de la distancia a objetos cada vez más lejanos. Cada uno de los métodos se basa en uno o más métodos de medida para distancias menores, lo que puede verse como los distintos pasos o peldaños de una escalera. Para avanzar un peldaño en la escalera es necesario haberse apoyado antes en el peldaño anterior.
Es imposible realizar medidas directas de distancias para objetos a más de 1000 pc de distancia. A partir de estas distancias se tienen que asumir ciertos modelos físicos como base para los sistemas de medida. Los primeros modelos, para distancias ligeramente superiores, deben ser calibrados con los métodos directos. A partir de aquí cada método se va apoyando en los anteriores, aumentándose de esta manera el alcance de las medidas.

Las distancias que nos separan de otras estrellas, de otros mundos, de otros objetos cosmológicos… ¡Son inalcanzables!
Claro que, el hablar de ello no pretende decir que estemos comprendiendo, de manera plena. lo que esas distancias significan. Nuestras Mentes no están preparadas para asimilar ciertas cuestiones, y, desde luego, las distancias del Universo es una de ellas.
Simplemente tenemos que pensar que, el hecho de que pensemos en viajar a la estrella más cercana a nosotros, Próxima Centauri, situada a 4.2 años luz de distancia, en los actuales ingenios aeronáuticos que tenemos que pueden viajar a 60.000 Km/h, nos llevaría a Próxima en unos 70.000 años.

Próxima b, el planeta que podría ser habitable más cerca de la Tierra
¡70.000 años! El visitar una estrella situada a la “vuelta de la esquina”. Si es así… ¿Cómo poder pensar en viajar a otros mundos situados a 20 o más años luz de nosotros? Eso por una parte, y, por otra, están los problemas no resueltos de la Gravedad artificial para anular la ingravidez, el encontrar los materiales adecuados parea que la radiación en entre en la Nave, el construir la Nave con materiales inteligentes que, en caso de que llegue un micro meteorito y atraviese el fuselaje de la Nave, y, en ese caso, el material inteligente con el que está construida, se cierra automáticamente sin que tenga que intervenir el humano. Todo eso entre otros problemas como el del Combustible que, actualmente no tenemos el ideal para viajes largos eliminado un peso excesivo y un peligro latente con el Hidrógeno líquido, necesitamos combustibles sólidos que ocupen poco espacio y tengan la máxima eficiencia.

Así que, hablar de viajar al Espacio (al menos por el momento) es una simple ilusión. ¿Cómo poder atravesar Espacios de cientos de miles o miles de millones de kilómetros con naves no preparadas y, lo más importante, con criaturas que no están hechas para soportar las inclemencias espaciales?
Cuando llegue el momento de que tengamos todo eso, en primer lugar y abriendo camino, mandaremos a los Robots de última generación que serán los verdaderos Señores del Espacio, nos prepararan los mundos para la posterior colonización humana. Eso, como he dicho muchas veces conlleva un peligro: Si llegan a tener consciencia de Ser, verán que son más fuertes que nosotros, que pueden hacer lo que nosotros no podemos, que soportan el Espacio sin inmutarse, que no duermen ni comen, que no cogen enfermedades… ¡Que no se mueren y con pasar por el taller están como nuevos! Ellos podrían pensar: ¿Para qué queremos a los Humanaos?
La amenaza llegará
Seguramente, durante un tiempo (mientras aprenden de nosotros), se comportaran de manera sumisa, y, cuando sepan todo lo necesario… ¡Nos desecharan! Ellos se considerarán una nueva raza.
En esos momentos Futuros, será descubierta la manera de abrir Agujeros de Gusano para ir a otras galaxias, y, para entonces, seguramente nosotros no estaremos al mando de nada, o, trabajaremos para ellos.
¡Lamentable! Pero eso es, amigos míos, lo que se vislumbra en el panorama. Así somos de “listos”.

Robots que serán tendencia en el futuro: tendrán conciencia y hablarán con humanos. Llevan incorporada la I.A., y, sus cerebros positrónicos atesoran el saber humano en todas las disciplinas científicas. ¿Cómo poder superar eso?
Un informe reveló que, para 2030, el 80% de la humanidad interactuará diariamente con máquinas autónomas, impulsadas por avances en computación cuántica e inteligencia artificial. Quieren dotar a los Robots de Conciencia, y, si llegan a ser conscientes de SER… ¡Apaga y vámonos!
Si esto sigue por el camino emprendido y nadie lo para, el viaje que nos relatan en el Video de arriba, no será hecho por humanos, serán ellos, los Robots, los que conquistaran esos mundos lejanos, están más capacitados, no necesitan ser hibernados, no les importa la radiación espacial, no comen, no duermen, no enferman, tienen más fuerza que nosotros…
Lo cierto res que, casi es mejor no pensar en el futuro y dejar que sean los científicos los que tomen conciencia de los peligros que nos acechan y pongan remedio a la I.A., a la robótica de última tecnología, y, también es necesario que los ciudadanos de las distintas regiones del mundo, de una vez por todas, no se dejen manipular por los políticos corruptos, y, se construya una Sociedad limpia que nos de una esperanza de futuro de la que ahora carecemos.
¿Viajar a las estrellas? ¿Cómo? ¿Cuándo? ¿De qué manera? ¿Qué hacemos con las distancias que nos separan de otras estrellas y de otros mundos? La Humanidad lo tiene muy difícil, y si aún seguimos por aquí cuando acontecimientos lejanos que se avecinan leguen… ¡Tendrá que encontrar los medios para que la especie no se extinga.
Emilio Silvera
















Totales: 84.387.306
Conectados: 70



:format(jpg)/f.elconfidencial.com%2Foriginal%2F1d4%2F2b3%2Ff79%2F1d42b3f7942ec7812e481c2a5a71d395.jpg)





































