Dic
6
Nuevos Mundos ¿Nuevas formas de vida?
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (0)
Es la primera vez que tenemos pruebas sólidas de que uno de estos “planetas polares” orbita un par de estrellas.
“Durante décadas, la ciencia ficción nos ha seducido con imágenes de mundos con dos soles, paisajes bañados por una doble luz crepuscular, y planetas que desafían toda lógica astronómica.
Ahora, la realidad parece alcanzar a la fantasía. Un equipo de astrónomos acaba de descubrir un exoplaneta que gira alrededor de dos enanas marrones, también conocidas como “estrellas fallidas”, en una órbita completamente perpendicular. Este raro sistema se encuentra a unos 120 años luz de la Tierra, lo bastante lejos para parecer ajeno, pero lo bastante cerca para fascinarnos.”
- Sistema binario
- Se trata de un gigante gaseoso con una masa similar a la de Saturno
- Orbita alrededor de una estrella naranja y una enana roja

Se han descubierto varios planetas que orbitan dos soles, siendo el más famoso Kepler-16b (similar a Tatooine de
Star Wars, un gigante gaseoso que orbita dos estrellas enanas marrones, un hallazgo que demuestra que los sistemas circumbinarios son reales y más comunes de lo que se pensaba, con otros como Kepler-1647b (el más grande) y 2M1510 también encontrados, ofreciendo visiones fascinantes de otros mundos con dobles amaneceres y puestas de sol.

Cada día que pasa encontramos nuevos mundos y, en esta ocasión, el que podemos ver en la imagen está acompañado por dos soles a los que orbita y de los que recibe luz y calor. Hemos descubierto más de cinco mil mundos situados en el espacio exterior que dan vueltas alrededor de estrellas de diferentes pelajes, más pequeñas o grandes que nuestro Sol y, en alguno de esos mundos, la vida podría estar presente.

Sabiendo que el Universo es igual en todas partes, todas sus regiones, por lejos que estén, están gobernadas por las mismas cuatro fuerzas fundamentales (arriba explicadas) y por las Constantes universales, como la carga del electrón, la masa del protón, la velocidad de la luz, la Gravedad, la Estructura Fina…
las distancias que de esos mundos nos separan y la rudimentaria técnica con la que podemos contar (de momento) para intentar esos inmensos desplazamientos, impiden que tratemos de viajar a ellos y conocer (si existen), a otras especies inteligentes.

El equipo del telescopio espacial Kepler de la NASA anunció no hace mucho el descubrimiento del primer exoplaneta que orbita simultáneamente dos estrellas de un sistema binario. La criatura se llama Kepler-16b -o mejor, Kepler-16 (AB)-b– y gira alrededor de dos estrellas más pequeñas que el Sol. Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exo-Saturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus.
Científicos del observatorio espacial Kepler de la NASA halló un planeta que está inserto en un sistema con dos estrellas, a una distancia de 200 años luz de la Tierra.
El planeta, ubicado en la constelación del Cisne, fue bautizado con el nombre de Kepler 16b y es frío y gaseoso en vez de un tórrido desierto, por lo cual es el primer planeta circumbinario, es decir, dos estrellas, según señala el artículo en la revista Science.
Como podréis ver y leer, los medios de comunicación cuentan las noticias científicas como mejor les parece y, no pocas veces distorsionan la realidad. Claro que, tener un científico “de verdad” en nómina y en cada especialidad…sería insoportable (económicamente hablando) para cualquier medio de comunicación y dan las noticias que les llegan de la mejor manera posible.
Las técnicas avanzan y cada vez es más fácil detectar nuevos mundos antes perdidos en el inmenso espacio interestelar y, la lejanía, las dificultades que añaden la luz emitida por la estrella que estos mundos orbitan, poco a poco, están siendo obviados por nuevas técnicas y formas nuevas que, pronto, nos llevarán a saber de mundos habitados por otros seres vivos.
Habrá que esperar un poco. Lo que pienso sobre:
La vida en otros mundos
^Quién sabe lo que ahí fuera podremos encontrar? Mundos con otras características pero aptos para la vida
Todo lo que podamos imaginar… ¡Podría ser cierto! También lo que ni podemos imaginar lo podría ser. Son tantas las variantes que existen en ese sentido de diversidad de mundos y estrellas que los puedan calentar para hacer posible la vida que, no podemos hacer otra cosa que conjeturar lo que podría ser. Desde luego, científicamente hablando, lo más probable es que sí exista la vida extraterrestre y, de como ésta pueda ser, serían muchas las variantes que lo determinarían por lo que, solo podemos especular. Me decanto, de todas las maneras, por el hecho de que la vida estará también, en otros mundos, basada en el Carbono como en la Tierra. Si el Universo es igual en todas partes y sus leyes las mismas también, ¿por qué allí sería distinto? Otra cosa sería las formas en las que puedan estar constituidos que, serían humanoides o de cualquier otro tipo, como en la Tierra, si existe vida en otros mundos, será de diversa constitución.
¿Quién no ha soñado alguna vez con seres de otros mundos?
¿Quién no se preguntó en alguna ocasión cómo serían los extraterrestres?
¿Existe alguna posibilidad de que alguna vez podamos ver uno?
Y sobre todo, ¿hay vida en otros mundos?
Según todos los indicios y datos que hemos podido obtener, en los mundos hermanos del Sistema Solar y en sus lunas, no parece que pueda haber vida como la nuestra; no reúnen las condiciones requeridas para ello. Eso no impide que pueda haber otras formas de vida en forma de bacterias u otras similares.

Como la atmósfera de Venus es extraordinariamente densa y está formada en su mayoría por dióxido de carbono, con capas de ácido sulfúrico, se forman densas nubes que oscurecen la superficie, dificultando la visión desde el espacio. Por ello, sondas como Magallanes tuvieron que emplear un sistema de radar. Las temperaturas allí harían imposible la presencia de vida tal como la conocemos.
![]()
Creo que son cientos de miles los mundos aptos para el surgir de la Vida. Sin embargo, las distancias que nos separan…
Las atmósferas de los planetas vecinos y las temperaturas que en ellos reinan, no son precisamente las más idóneas para que la vida germine en ellos. Sin embargo, en algún que otro satélite, como es el caso de la luna de Júpiter, Europa, que constituye un mundo completamente helado aunque debajo de la superficie (así se cree) podría existir un océano de agua no tan fría y calentada gracias a la influencia de las mareas de Júpiter, ¿Quién podría asegurar que allí, en presencia de agua líquida, no podría haber alguna forma de vida?

En la luna de Saturno Titán se cree que pueden existir algunas formas de vida extraterrestres, posiblemente basadas en el metano que fluye por ríos y que la atmósfera contiene provocando lluvias de metano. Según los datos obtenidos por la sonda Cassini los ríos de metano fluyen por la superficie de Titán, además la sonda Huygens que aterrizó en Titán en 2005 mostrando las primeras imagenes de la superficie de Titán, también aporto datos muy interesantes.
Titán, con una atmósfera de metano y nitrógeno y en cuya superficie podría haber nitrógeno líquido y compuestos orgánicos sólidos. Lo que también se puede decir de Tritón, el satélite de Neptuno. Así que, son tres satélites que podrían (es concebible) tener alguna forma de vida.
Sin embargo, hasta el momento, son sólo conjeturas. El único objeto del Sistema Solar que está a una distancia idónea del Sol, que tiene los elementos y condiciones precisas para la formación de la vida (temperatura, atmósfera, etc), es el planeta Tierra.

En la noche oscura miramos al cielo y solo vemos una pequeña cantidad de estrellas
El número total de estrellas en el universo conocido se calcula que sobrepasan los 1.000 millones de millones (1.000.000.000.000.000.000.000). Nuestra propia galaxia, la Vía Láctea, contiene más de cien mil millones de estrellas. Si todas las estrellas se han desarrollado bajo los mismos parámetros que la nuestra (el Sol), es lógico pensar que casi todas ellas tendrán su propio sistema planetario.
¿Es correcta la cifra del número de estrellas arriba reseñado?
Sin embargo, lo que no es tan probable, es que todas tengan un planeta con la composición, la atmósfera, la distancia idónea a su estrella y abundante agua y los productos químicos necesarios para la creación y surgimiento de la vida.
Son muchos los planetas descubiertos fuera de nuestro sistema solar, todos ellos muy grandes, incluso varias veces el volumen y la masa de Júpiter (no aptos para la vida inteligente tal como la conocemos).
Otros Sistemas planetarios, como el nuestro, tienen planetas situados en la zona habitable
Hay que esperar a que estén en funcionamiento las nuevas generaciones de telescopios, con técnicas superiores al Hubble, que nos podrán buscar nuevos planetas fuera del Sistema Solar y que a muchos años-luz de nosotros, podrían albergar vida inteligente.
El descubrimiento de planetas enormes situados en sistemas solares muy lejanos son una esperanza, ya que donde existen esa clase de planetas, es lógico pensar que existan otros más pequeños que, como la Tierra, puedan tener condiciones distintas y que permitan alguna clase de vida.
La imagen de Galileo mirando por su telescopio a las estrellas lejanas es sólo un símbolo del pasado. Ahora, los modernos astrónomos cuentan con sofisticados telescopios de última generación que dirigen por ordenador y sentados cómodamente las operaciones de investigación de las estrellas. Los datos son estudiados y normalizados por enormes y potentes computadoras que, en la pantalla de ordenador, les enseña lo que han detectado. Así es la astronomía moderna que contando con nuevas técnicas y muchos medios, pueden descifrar problemas antes irresolubles.
Hay estudios que favorecen la creencia de que los sistemas solares son tan comunes como las estrellas. Pero, aún suponiendo que la mayoría e incluso todas las estrellas posean sistemas planetarios, y que muchos de esos planetas sean similares a la Tierra en tamaño, debemos saber qué criterios han de satisfacer o qué requisitos deben tener o cumplir para que sean habitables.
Incluso en planetas que orbitan estrellas distintas al Sol, podría estar la vida presente
Se cree que una estrella debe tener cierto tamaño para poder poseer un planeta habitable. Cuanto más grande es la estrella tanto menor es su tiempo de vida, y si excede de ciertas dimensiones, no vivirá lo suficiente como para permitir que un planeta recorra las prolongadas etapas de su evolución química, antes de que se puedan formar y desarrollar en él formas de vida complejas.
Si la estrella es demasiado pequeña no puede calentar suficientemente a un planeta si este no está muy próximo a ella, y en tal caso, sufriría periódicos efectos perjudiciales. Se estima que sólo las estrellas de las clases espectrales F2 a Kl son adecuadas para el mantenimiento de planetas con nivel de habitabilidad suficiente para seres humanos: planetas que puedan ser colonizados (si algún día conseguimos el viaje -la forma- de desplazarnos entre las estrellas).
Si pensamos que en nuestra galaxia existen 100.000 millones de estrellas, y que tal ingente número de soles es la media de las galaxias, podemos suponer, aplicando la lógica, que estrellas del tipo idóneo para tener planetas como la Tierra o similares deben ser miles de millones. Lo que nos lleva a la conclusión de que, planetas como el nuestro también podrían ser unos cuantos.
Es probable que estos planetas portadores de la vida puedan estar distribuidos por el universo de manera uniforme; la dificultad es que el universo es demasiado grande. Si cada 100.000 años-luz cúbicos existiera un planeta como la Tierra, serían muchísimos los planetas con vida, lo que nos llevaría a tener que explorar a una distancia mínima de unos 30 años-luz para encontrar uno de esos planetas hermanos del nuestro.
Sería extraño que por esta región pudiera existir vida inteligente y que, a pesar de la cercanía con nuestro Sistema solar (4,3 años-luz), no tuviéramos ninguna prueba de su existencia. Claro que, también podría tratarse de formas de vida poco evolucionadas que no han conseguido aún la tecnología necesaria para las comunicaciones a tan largas distancias.
Algún especialista, no recuerdo ahora mismo su nombre, expuso la idea de que 14 estrellas distantes de nosotros a lo sumo 22 años-luz, pueden poseer planetas habitables y sopesó las probabilidades de que esto pueda ser así en cada caso. Llega a la conclusión de que la mayor probabilidad de planetas habitables se da precisamente en las estrellas más cercanas a nosotros, las dos estrellas similares al Sol del Sistema Alfa Centauro A y B. Según estimaba este señor, estas dos estrellas compañeras tienen, consideradas en conjunto, una posibilidad entre diez de poseer planetas habitables, la probabilidad total para el conjunto de 14 estrellas vecinas es de 2 entre 5.
Si todas las leyes del universo son las mismas que rigen aquí en la Tierra y en el Sistema Solar y en nuestra galaxia, entonces creo que para opinar sobre la posibilidad de vida extraterrestre, hay que conocer los trabajos de H. C. Urey, Stanley Lloyd Miller y otros estudiosos del origen de la vida en la Tierra, y aplicando sus estudios a planetas lejanos, tendremos la respuesta adecuada.
En los años 50, los bioquímicos Stanley Miller y Harold Urey llevaron a cabo un experimento que mostraba que varios componentes orgánicos se podían formar de forma espontánea si se simulaban las condiciones de la atmósfera temprana de la Tierra.
Diseñaron un tubo que contenía la mayoría de los gases, similares a los existentes en la atmósfera temprana de la Tierra, y una piscina de agua que imitaba al océano temprano. Los electrodos descargaron un corriente eléctrica dentro de la cámara llena de gas, simulando a un rayo. Dejaron que el experimento se sucediera durante una semana entera, y luego analizaron los contenidos en la piscina líquida. Se dieron cuenta de que varios aminoácidos orgánicos se habían formado de manera espontánea a partir de estos materiales inorgánicos simples. Estas moléculas se unieron en la piscina de agua y formaron coacervados.
Este experimento, junto a una considerable evidencia geológica, biológica y química, ayuda a sustentar la teoría de que la primera forma de vida se formó de manera espontánea mediante reacciones químicas. Sin embargo, todavía hay muchos científicos que no están convencidos.
Como nos dice Kike en uno de sus comentarios, está claro que las distancias nos impiden ese contacto con otras civilizaciones extraterrestres. El Espacio-tiempo que nos separa de ellas es demasiado grande para que podamos llegar a ellos o ellos hasta nosotros. Y, como bien apunta, será en el futuro lejano, cuando una vez en posesión de los conocimientos necesarios, podamos, al menos, intentar esquivar el espacio-tiempo y, por caminos ahora desconocidos, poder llegar hasta esos lejanos lugares donde habitan otros seres. Sin que consigamos conquistar esos conocimientos para poder burlar la velocidad de la luz, ese límite infranqueable en nuestro universo, no conseguiremos nunca llegar hasta ellos.
Otra cuestión será el coincidir, tanto en el espacio como en el tiempo, con otras civilizaciones inteligentes; no será fácil. Podría darse el caso de civilizaciones que existieron y desaparecieron antes de que apareciéramos nosotros, o que existan en este mismo momento y que estén tan atrasadas que no podamos detectar sus señales electromagnéticas inexistentes, o que estén tan adelantados que no quieran saber nada de nosotros y estén esperando el momento idóneo de nuestra evolución para contactar, ¿quien podría saber la verdad? Otra posibilidad es que nosotros nos destruyamos antes de que todo eso sea posible.
Soñamos con lo que pudiera ser en el futuro
Pensemos por un momento que existen planetas idóneos para la vida a 500 años-luz de la Tierra, y en ese tiempo, recorreríamos 4.730.400.000.000.000 Km si tuviéramos naves espaciales cuya velocidad igualara a la velocidad de la Luz. Pero como nuestros vehículos espaciales sólo alcanzan 50 o 60 mil Km/h, ¿Qué materiales tendría que tener la nave viajera para que no se destruyera por el camino?, ¿Quién podría soportar tal viaje?, ¿Cuántas generaciones pasarían antes de llegar?, ¿Qué seres llegarían después de las mutaciones sufridas en la ingravidez durante tanto tiempo?
Una sola cuestión es segura: la vida existe fuera de nuestro Sistema Solar, lo contrario sería un milagro. No podemos ser tan ególatras y pensar que estamos solos, sería mucho espacio para tan pocos.

Se han descubierto estrellas como el Sol que están orbitadas por diversos planetas
Sí, solo en la Vía Láctea se han calculado 30.000 millones de estrellas de la clase G2V (como el Sol)
Resulta que nos somos únicos ni tampoco unos privilegiados, hemos surgido en el planeta Tierra como otros seres inteligentes habrán evolucionados en otros mundos. No creo en el dicho de que somos los elegidos. La importancia que podamos tener es relativa, y, sobre todo, serán nuestros seres queridos los que nos echarán de menos cuando nos marchemos. En ese momento que siempre llega, ninguna estrella del cielo dejará de brillar, todo seguirá su ritmo cambiante con el paso del Tiempo.
Emilio Silvera V.
Dic
6
Hay que prestar más atención ak mundo que nos rodea
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Dic
5
Hoy un sueño ¿Realidad mañana?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
![]()



Hay fenómenos de la Naturaleza que, a nivel local, son devastadores y producen estragos materiales acompañados de pérdida de vidas. Hay zonas del mundo que son más propensas a sufrir estos fenómenos y, la gente que tienen allí sus habitats, padecen los efectos de estas imprevistas acciones naturales. Arriba podemos contemplar una vista aérea de Puerto Príncipe. Tras el terremoto de Haití en 2010, la ciudad quedó destruida.
Los terremotos, volcanes, Tsunamis… ¿Quién los para?



En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. Según toos los datos que tenenos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

Llegará un día en el que, podremos entrar en un inmenso espacio, una enorme habitación, en la que, previa elección de la programación adecuada, todo se transformará en un “mundo ficticio”, un holograma que, lo mismo podrá ser una playa luminosa con arena dorada por el Sol que, una Selva tropical o un desierto, dependiendo de los gustos del usuario.
Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Witten (el Físico de la Teoría M), está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he referido en otras ocasiones, él dijo:

Witten (el Físico de la Teoría M)
“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante 25 años.”
En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación. El astrónomo Arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. ¡Cómo cambia todo con el Tiempo! Hasta la manera de pensar.
El Principio de Incertidumbre
Sin embargo, muchos son los ejemplos de un ingenio superior que nos llevaron a desvelar secretos de la Naturaleza que estaban profundamente escondidos, y, el trabajo de Dirac en relación al electrón, es una buena muestra de ese ingenio humano que, de vez en cuando vemos florecer.
Ya que la ecuación de Dirac fue originalmente formulada para describir el electrón, las referencias se harán respecto a “electrones”, aunque actualmente la ecuación se aplica a otros tipos de partículas elementales de espín ½, como los quarks.
“Ésa es la ecuación de Dirac. Gracias a esto, se describe el fenómeno de entrelazamiento cuántico, que en la práctica dice que: ‘Si dos sistemas interactúan uno con el otro durante un cierto período de tiempo y luego se separan, lo podemos describir como dos sistemas separados, pero de alguna manera sutil están convertidos en un solo sistema. Uno de ellos sigue influyendo en el otro, a pesar de kilómetros de distancia o años luz’. Esto es el entrelazamiento cuántico o conexión cuántica. Dos partículas que, en algún momento estuvieron unidas, siguen estando de algún modo relacionadas. No importa la distancia entre ambas, aunque se hallen en extremos opuestos del universo. La conexión entre ellas es instantánea.”
Una ecuación modificada de Dirac puede emplearse para describir de forma aproximada los protones y los neutrones, formados ambos por partículas más pequeñas llamadas quarks (por este hecho, a protones y neutrones no se les da la consideración de partículas elementales).
La ecuación de Dirac presenta la siguiente forma:

Siendo m la masa en reposo del electrón, c la velocidad de la luz, p el operador de momento,
la constante reducida de Planck, x y t las coordenadas del espacio y el tiempo, respectivamente; y ψ (x, t) una función de onda de cuatro componentes. La función de onda ha de ser formulada como un espinor (objeto matemático similar a un vectorque cambia de signo con una rotación de 2π descubierto por Pauli y Dirac) de cuatro componentes, y no como un simple escalar, debido a los requerimientos de la relatividad especial. Los α son operadores lineales que gobiernan la función de onda, escritos como una matriz y son matrices de 4×4 conocidas como matrices de Dirac.
Belleza matemática: la identidad de Euler
El premio Nobel Paul Dirac incluso llegó a decir de forma más categórica:
“Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».“
Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, también decido según mis propios criterios mi opinión, que no obligatoriamente coincidirá con alguna de esas opiniones, y que en algún caso, hasta me permito emitirla.

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? Nadie las llama y, sin embargo, allí aparecen para decirnos que, la Teoría de cuerdas es un buen camino a seguir, ya que, si en ella subyacen las ecuaciones de Einstein de la relatividad General… ¡No debe ser por casualidad!
Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas es naturalmente una teoría de la creación.


Las primeras observaciones realizadas por Planck | ESA y Axel Mellinger
Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que podría ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar este eco del Big Bang, una radiación de microondas que impregna el universo conocido.
Arno Penzias y Robert Wilson
El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante.
El calentador se llega a poner al rojo vivo, por lo que emite también algo de calor por radiación.
Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un horno, y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

Esta radiación, cómo no, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es también la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta clase de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura.
Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de este modo calentar gradualmente el planeta.

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

Ya la lista de ingenios es larga. Todos quieren medir la radiación del fondo de microondas generadas por el Big Bang. Incluso hemos preparado telescopios especiales para que nos puedan captar las ondas gravitatorias surgidas en aquellos primeros momento de la inflación.
La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió hasta el punto en el que los átomos pudieron empezar a componerse; los electrones pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este momento, el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación. Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.
Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

La liberación de los fotones hizo del universo opaco otro transparente
Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.
La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

![]()
Desintegración Alfa y Desintegración Beta
Hablar, sin más especificaciones, de radiación, es estar refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el universo. También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.
La radiación actínida es la electromagnética que es capaz de iniciar una reacción química. El término es usado especialmente para la radiación ultravioleta y también para denotar radiación que podría afectar a las emulsiones fotográficas.

La radiación gamma es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.

Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.
La Radiación expone un amplio abanico dependiendo de la fuente: blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotón, ultravioleta, de la teoría cuántica, de radiactividad… y, como se puede ver, la radiación en sus diversas formas es un universo en sí misma.
Radiación de cuerpo negro, el cuanto de Planck
Siempre me llamó la atención y se ganó mi admiración el físico alemán Max Planck (1.858 – 1.947), responsable entre otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
Einstein se inspiró en este trabajo para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrón, Em, está dada por la ecuación que lleva su nombre: Em = hf – Φ.

Cada metal requiere, para que se produzca la extracción, una radiación con una frecuencia mínima (no). Cualquier otra radiación de menor frecuencia, no será capaz de arrancar electrones. Por debajo de la frecuencia mínima la intensidad de corriente -”i” (amperios)- será cero. No hay efecto fotoeléctrico.
Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:
1. Vale 10-35 metros. Esta escala de longitud (veinte órdenes de magnitud menor que el tamaño del protón, de 10-15 m) es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en cuenta la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.
2. Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional. Así, Se denomina masa de Planck a la cantidad de masa (21,7644 microgramos) que, incluida en una esfera cuyo radio fuera igual a la longitud de Planck, generaría una densidad del orden de 1093 g/cm³. Según la física actual, esta habría sido la densidad del Universo cuando tenía unos
segundos, el llamado Tiempo de Planck. Su ecuación, es decir la masa de Planc se denota:
El valor de la masa de Planck
se expresa por una fórmula que combina tres constantes fundamentales, la constante de Planck, (h), la velocidad de la luz (c), y la constante de gravitación universal (G). La masa de Planck es una estimación de la masa del agujero negro primordial menos masivo, y resulta de calcular el límite donde entran en conflicto la descripción clásica y la descripción cuántica de la gravedad.
“Aunque todas estas descripciones reflejan más una abundante imaginación que un hecho existencial apoyado teóricamente con alguna hipótesis que pueda ser comprobada en el laboratorio sobre hechos que están más allá de poder ser medidos jamás en algún laboratorio construido por humanos. La única forma de confrontar la factibilidad o la posibilidad del modelo de la espuma cuántica nos lleva necesariamente a confrontar la carencia de un modelo que logre unificar exitosamente al macrocosmos con el microcosmos, a la Relatividad General con la Mecánica Cuántica, la Gravedad Cuántica. Si la energía y la materia (o mejor dicho la masa-energía) están discretizadas, se supone que también deben de estarlo el espacio y el tiempo (o mejor dicho, el espacio-tiempo), y la “partícula fundamental” del espacio-tiempo debe de serlo el gravitón, aunque de momento todo esto son especulaciones que seguirán siéndolo mientras no tengamos a la mano algo que pueda confirmar la existencia de tan exótica partícula, quizá la más exótica de cuantas hayan sido concebidas por la imaginación del hombre.”

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. Como la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 103 GeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Únicamente en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas condiciones. Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.


¿Dónde está el Gravitón que no se deja ver? ¿Encontraremos esa Teoría de la Gravedad Cuántica? ¿Será la “materia oscura” una realidad, o simplemente una ilusión de la Mente?
Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la Naturaleza, y la innegable batalla mantenida a lo largo de la historia por los científicos para descubrirlos. Muchos han sido los velos que hemos podido descorrer para que, la luz cegadora del saber pudiera entrar en nuestras mentes para hacerlas comprender cómo actuaba la Naturaleza en ciertas ocasiones y el por qué de tales comportamientos, y, sin embargo, a pesar del largo camino recorrido, es mucho más el que nos queda por andar.
Emilio Silvera V.
Dic
5
Nos cuentan nuestro destino
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Lo cierto amigos, es que cuando el Sol agote su combustible nuclear de fusión y sea una Gigante Roja, habrá crecido tanto que engullirá a Mercurio y Venus y se estima que estará tan cerca de la Tierra que las temperaturas se elevarán y se evaporarán los océanos, y, la vida tal como la conocemos, desaparecerá de éste mundo calcinado.

El Sol. mediante la fusión nuclear que se produce en sus “entrañas”, radia y hace que tienda a expandirse (como cuando la leche hierve el cazo). La fuerza de Gravedad es la energía contrapuesta que frena esa expansión, y, así, en ese equilibrio lleva el Sol más de 4.500 millones de años y lo estará otros cinco mil millones.

La gigante roja crecerá tanto que engullirá Mercurio y a Venus, y, muy cerca de la Tierra, las temperaturas aumentarán tanto que los océanos se evaporarán, la vida dejará de existir tal como la conocemos.
Cuando agote todo el combustible y se acabe la mecánica de fusión, el Sol quedará a merced de la fuerza de Gravedad que lo contraerá sobre sí mismo, de manera tal que, sólo se verá frenado por la degeneración de los electrones que son fermiones sometidos al Principio de exclusión de Pauli (podéis mirar ese principio).

Como los electrones no soportan estar juntos, a medida que la ingente masa del Sol se comprime más y más, se sienten como claustrofóbicos y se degeneran, y, entonces, comienzan a moverse a velocidades relativistas, de tal manera que dicho fenómeno puede frenar ala Gravedad, y, para entonces, el Sol habrá eyectado material al Espacio Interestelar para formar una Nebulosa planetaria, y, el resto de la masa se habrá convertido en una estrella enana blanca que radiará en el ultravioleta rabioso ionizando el material de la nebulosa.

Esto será, a grandes rasgos, el destino del Sol y de la Tierra, y, para cuando eso suceda (espero), la Humanidad habrá partido hacia otros mundos que, como la Tierra ahora, les de cobijo. Claro que, no sabemos si nuestra Civilización llegará tan lejos, o, si mientras todo eso llega, el movimiento de la Tierra (observado por un equipo de astrónomos) alejándose del Sol, la hará salirse de la zona habitable y, si eso es así….
¡Qué espectáculo!
Por otra parte, tenemos a nuestra vecina Andrómeda que se acerca velozmente a la Vía Láctea con la que quiere fusionarse, y, tan “casamiento”, tampoco traerá nada bueno para la Humanidad.
Lo cierto es que, si no es por una cosa lo será por otra pero, nuestro Futuro… ¡No se ve nada amigable!
Y, no digamos lo que puede pasar con la dichosa Inteligencia Artificial que, con fuerza inusitada trata de crear una generación de Robots inteligentes que, si llegan a tener conciencia de Ser….
¡Vaya porvenir nos espera!
Claro que, para cuando todo eso vaya a suceder… ¿Estaremos todavía por aquí?
Emilio Silvera V.
Dic
5
No podemos negar nuestra inquietud por saber
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Siendo cierto que no podemos negar nuestra inquietud por saber, también lo es que, a pesar del empeño que ponemos, sabemos menos de lo que creemos que sabemos. Nunca podremos saberlo todo sobre todo. Las preguntas siguen siendo más que las respuestas.
Hemos alcanzado un gran nivel en las distintas disciplinas del saber humano, unas debido al avance de las tecnologías y otras debido al surgir de nuevas ideas de mentes privilegiadas, lo cierto es que las ciencias formales, las ciencias naturales y las ciencias sociales o humanas, han formado un cuadro plausible que estructura un conjunto del saber humano que nos lleva (con el paso del tiempo), a niveles superiores que nos permiten ir desvelando secretos escondidos en las “entrañas” de la Naturaleza.
A veces me entristece el ver que, prestigiosos científicos entrevistados con la intención de explicar temas complejos al común de los mortales, se enredan en adornos que, finalmente, hacen fracasar el intento de llevar ese mensaje al no versado en los temas científicos de turno.
El arte de divulgar está centrado en el hecho cierto de que, el experto, explica cuestiones complejas con una gran sencillez que hace posible que el no versado lo entienda.
Me acuerdo de aquella llamada de un físico amigo, que había puesto en marcha un Blog de Física, y, que pasados varios años, el no se sentía satisfecho, y me preguntaba.
- ¿Cómo te explicas que en mi blog tenga varios cientos de miles de visitas, y, en tuyo, hayas alcanzado varios millones?
El estaba extrañado con razón, sus trabajos expuestos en el Blog eran perfectos, escrupulosamente técnicos, matemáticamente perfectos como era d4e esperar de un Doctor en física.
Le conteste
- Amigo mío, la diferencia estriba en el hecho de que tú has hecho un blog para expertos en las materias que tratas de explicar, y, por mi parte, he creado un blog menos pretencioso, en el que trato de explicar las cuestiones que trato de manera sencilla, evitando (cuando es posible) las complejidades y las ecuaciones. Si te pones en lugar del visitante que llega a tu blog y no enti4ende nada… Lo comprenderás.
Por un momento, la respuesta fue el silencio, tras el cual, me dice.
- Amigo mío, tu sencilla explicación que me has dado (la respuesta que no quería oír), que explica perfectamente la situación. A la vista de todo esto, no tengo que recapacitar sobre la realidad, y, pienso que explicar a los expertos lo que ya saben (que sería mi caso), tiene poco sentido, y, ello me lleva a cerrar el Blog.
Así sucedió, el eliminó la publicación del Blog, mientras que por mi parte, contando las cosas a mi manera y poniéndome en el lugar del oyente o del lector que lo visita, procuro que todo se entienda.
Por ejemplo:

El núcleo atómico es de una complejidad enorme, es una parte de las cien mil en las que podemos dividir el átomo. Sin embargo, ese infinitesimal núcleo posee el 9999% de toda la masa del átomo, ya que, los protones y los neutrones son masicos, mientras que los electrones que orbitan el núcleo, tienen una masa ínfima.
Pero la complejidad del núcleo no finaliza ahí, los protones y los neutrones situados en ese núcleo, se llaman nucleones, y son partículas complejas de la familia de los Hadrones que pertenecen a su rama Bariónica.
La complejidad se complica al saber que, dentro de estos nucleones, habitan tripletes de Quarks, otra familias de partículas que son elementales, y, dentro de cada protón existen 2 Quarks UP y 1 Quark DOWN, mientras que dentro de los Neutrones habitan 2 Quarks DOWN Y 1 Quark IP.
Así los Quarks están confinados dentro de los nucleones por medio de la Fuerza nuclear fuerte (la fu3erxqa fundamental más poderosa de las cuatro fundamentales que rigen en el universo), esta fuerza tiene unos emisarios que son partículas de la familia de los Bosones y que se llaman Gluones.
Estas partículas emisoras de la fuerza nuclear fuerte , como los fotones que sin emisarios de la fuerza electromagnética, ni tienen masa. La misión de los Gluones es la de no permitir a los Quarks que se separen, y, si lo hacen, la fuerza aumenta para impedirlo.
La fuerza actúa como un muelle de acero, cuanto más lo estiramos más resist3encia ofrece. El nombre de los Bosones intermediarios de la fuerza (Gluones), se debe a la palabra GLUE inglesa que significa pegamento.
Este ejemplo de explicación de lo que es el núcleo atómico, tan pequeño y tan complejo, no resulta nada fácil para algunos, y, por mi parte, he procurado hacerlo de la manera más sencilla posible, otra cosa es que lo haya conseguido.
La Ciencia, amigos míos, no es fácil de divulgar al común de los mortales, y, desde luego, merece la pena el esfuerzo de intentarlo cuando (como en este caso), las visitas diarias al lugar es de entre 20.000 y 30.000, lo que es un buen pago al esfuerzo.
Me llena de satisfacción cuando algunos comentarios me hacen ver que interesaron al visitante, y, que de paso, habían logrado entender algo que antes, nadie les había sabido explicar. algo que no sabían.
Gracias amigos.
Emilio Silvera V.
















Totales: 84.130.825
Conectados: 97










































