sábado, 12 de octubre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Desvelar los secretos del Universo? ¿Podremos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber: ¡Ese viaje interminable!    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Sistema solar

 

Grupo Local - Wikipedia, la enciclopedia libre

Grupo Local de galaxias

 

Super-Cúmulo Local

No pocas veces pronunciamos la palabra UNIVERSO sin ser conscientes de la grandeza que esa simple frase abarca. El Universo es todo lo que existe, incluyendo el espacio, el tiempo y la materia y toda esa inmensidad que va desde lo microscópico hasta las más grandes estructuras de los cúmulos de galaxias y, no podemos olvidar que, dentro de todo ese inconmensurable “TODO”, también está presente la VIDA, como una singularidad muy especial de la Naturaleza de la que forma parte a través de la evolución de la materia-energía y del espacio-tiempo que así llegó a facilitar tan extraordinaria transición de fase.

 

 

La longitud de Planck es la longitud mínima posible? - Quora

 

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y masa del protón.

α = 2πe2 / hc ≈ 1/137
αG = (Gmp2)2 / hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como α (alfa) y αG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes.

 

-La gravedad puede tener un papel en el mundo a pequeña escala.
-La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

 

La importancia de imaginar el futuro… y anticiparlo | KIO | EL PAÍS América

¿Lo que podremos conseguir en el futuro? solo podemos llegar a imaginarlo, ¡A pesar de poderosa  poderosa nuestra mente!

Pero de momento, nuestra ignorancia es grande y poco tendríamos que buscar para poner, no uno sino millones de ejemplos. Lederman en su libro La Partícula Divina, nos decía:

 

La partícula divina - Leon Lederman y Dick Teresi

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

 

Letrero de puerta, placa de número de casa, números de puerta de cerámica,  letrero de patio, dirección de la casa, diseño de rosa y mariposa - Etsy  España

 

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e-), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h). α = 2πe2 hc =  137

Lo más notable de este número es su dimensionalidad. La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo; la constante de Planck racionalizada, ћ, es h/2π = 1’054589×10 julios segundo; la altura de mi hijo Emilio, el peso de mi mujer (siempre queriendo mantenerlo)… Todo viene con sus dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está solo: se escribe desnudo a donde va.

 

Ediciones Sombra

Los Asgard en la serie Stargate

                 Arriba la imagen de uno de los llamados “Grises” de los que dicen que somos nosotros mismos en el futuro

Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la galaxia Andrómeda, aunque utilicen dios sabe qué unidades para la carga del electrón y la velocidad de la luz y qué versión utilicen para la constante de Planck, también les saldrá el 137.

Es un número puro. No lo inventaron los hombres. Está en la naturaleza, es una de sus constantes naturales, sin dimensiones. La física se ha devanado los sesos con el 137 durante décadas. Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.

 

La constante de estructura fina (aprox. 1/137) es una constante  adimensional que caracteriza la fuerza de la interacción electromagnética  entre partículas elementales cargadas. Su valor es aproximadamente 1/137, y  es una de

Constante universal que está relacionada con el desplazamiento de los niveles de energía de un átomo que presenta estructura fina. Su valor es α = 2π e2 /hc, donde e es la carga del electrón, h la constante de Planck, y c la velocidad de la luz en el vacío.

¿Por qué alfa es igual a 1 partido por 137?

Esperemos que algún día aparezca alguien que, con la intuición, el talento y el ingenio de Galileo, Newton o Einstein, nos pueda por fin aclarar el misterioso número y las verdades que encierra. Menos perturbador sería que la relación de todos estos importantes conceptos (e-, h y c) hubieran resultado ser 1 ó 3 o un múltiplo de pi… pero ¿137?

 

 

Arnold Sommerfeld percibió que la velocidad de los electrones en el átomo de hidrógeno es una fracción considerable de la velocidad de la luz, así que había que tratarlos conforme a la teoría de la relatividad. Vio que donde la teoría de Bohr predecía una órbita, la nueva teoría predecía dos muy próximas.

Esto explica el desdoblamiento de las líneas. Al efectuar sus cálculos, Sommerfeld introdujo una “nueva abreviatura” de algunas constantes. Se trataba de 2πe2 / hc, que abrevió con la letra griega “α” (alfa). No prestéis atención a la ecuación. Lo interesante es esto: cuando se meten los números conocidos de la carga del electrón, e-, la constante de Planck, h, y la velocidad de la luz, c, sale α = 1/137. Otra vez 137 número puro.

 

Pero esas constantes universales son las que han propiciado que nuestro universo tenga la vida

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

¡El Universo! Esa complejidad que, incansables, queremos desvelar.

No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente durante el transcurso de los miles de millones de años de la historia del universo. Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejoró Einstein y que, no sería extraño que en el futuro pudiera mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.

 

RELATIVIDAD Y MECÁNICA CUÁNTICA – GABRIEL ROSSELLÓ, ESCRITOR

 

Lo cierto es que la Física está dominada por los paradigmas impuestos desde hace cien años por la mecánica cuántica y la relatividad que son dos teorías fundamentales que parten de principios rectores a partir de los cuales las teorías se construyen de una manera casi sistemática. En estos ejemplos es fácil de identificar ese principio rector:

En la Relatividad el principio es la constancia de la velocidad de la luz o, lo que es equivalente, que la velocidad de la luz determina una cota máxima sobre la velocidad de transmisión de información. Una vez aceptado este principio, el resto se da casi por añadidura. La constancia de la velocidad de la luz implica un espacio tiempo con una determinada geometría, la equivalencia entre masa y energía, así como el resto de los resultados de la Dinámica y la Cinemática Relativistas.

 

59 - Curso de Relatividad General [Ecuaciones de Campo & Constante  Cosmológica]

 

No podemos perder de vista el hecho cierto de que, la razón por la que la Relatividad se convierte en una auténtica Teoría autónoma es precisamente porque eleva la constancia de la velocidad de la luz a principio rector, a postulado. No se trata de explicar o modelar dinámicamente por qué la velocidad de la luz es la velocidad máxima sino que, muy por el contrario, se trata de derivar toda una cinemática, de hecho la propia naturaleza geométrica del espacio y el tiempo, a partir de dicho postulado.

Mecánica cuántica - Wikipedia, la enciclopedia libreFoto: La mecánica cuántica es la teoría que rige el micromundo de los átomos y las partículas. (Pixabay)

 

El Universo de la Mecánica Cuántica nos es fantasmagórico e irreal, es un mundo aparte en el que podemos ver cosas inusuales y sorprendentes, allí no rigen las mismas leyes que podemos constatar a nuestro alrededor en el mundo macroscópico, o, si están presentes, funcionan de otra manera que se alejada de nuestro propio mundo, no hemos llegado a comprenderla… -del todo-.

Nos decía el filósofo Karl Popper:

“La Ciencia será siempre una búsqueda, jamás un descubrimiento real. Es un viaje, nunca una llegada.”

El hombre llevaba toda la razón toda vez que, emprendemos la aventura de la Ciencia y tratamos de buscar “cosas” y “comportamientos” que nos digan por qué, la Naturaleza, funciona de esta o de aquella otra manera. Vamos desvelendo escenarios y obteniendo algunas respuestas pero, el viaje no acaba nunca, a cada puerta abierta, nos encontramos con otro nuevo espacio en el que también, existen muchas puertas cerradas cuyas llaves tendremos que encontrar y siempre será, de esa manera: ¡Un viaje interminable!

Emilio Silvera V.

Guardianes del saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la Edad Media el pensamiento indio estaba muy por delante del europeo en varias áreas.  En esta época, los monasterios budistas de la India tenían tantos recursos que actuaban como bancos e invertían sus excedentes financieros en empresas comerciales.  Detalles como éste aclaran por qué los historiadores se refieren a la reunificación del norte de la India bajo los Guptas (c.320-550) como una era dorada.

 

HarshaHarshaReyes historicos de la India

 

Esta dinastía, en conjunción con el reinado de Harsha Vardhana (606-647), abarca el período que hoy se considera la era clásica de la India.  Además de los progresos realizados en matemáticas, esta época fue testigo del surgimiento de la literatura en sánscrito, de la aparición de formas de hinduismo nuevas y duraderas, entre ellas el vedanta, y del desarrollo de una espléndida arquitectura religiosa.

Más que la mayoría de los lenguajes, el sánscrito encarna una idea: es el lenguaje especial para gente que deben tener una clasificación también especial.  Es una lengua de más de tres mil años de antigüedad. En un principio, fue la lengua del Punjab, pero luego se difundió al este.

El Rig Veda | Literaturas de la AntigüedadGleanings from Rig Veda eBook de Choudur Satyanarayana Moorthy - EPUB |  Rakuten Kobo España

 

Se puede discutir si los autores del Rig Veda fueron los arios procedentes de fuera de la India o indígenas de la región, pero lo que no se puede poner en duda es que poseían un idioma de gran riqueza y precisión, y una tradición poética cultivada.

La importancia de los gramáticos para la historia del sanscrito no tiene comparación en ninguna otra lengua del mundo.  La preeminencia que alcanzó esta actividad se deriva de la necesidad   de preservar intactos los textos sagrados de los Vedas: según la tradición, cada palabra del ritual tenía que pronunciarse de forma exacta.  Así que da demostrado en algún momento del siglo IV a.c. cuando Panini compone su Gramática.

 

Leer más

Decimos que tenemos Imaginación pero, ¿Y la Naturaleza?

Autor por Emilio Silvera    ~    Archivo Clasificado en La Naturaleza...El Universo    ~    Comentarios Comments (23)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡La Imaginación! Que es uno de nuestros grandes Tesoros, ¿se puede comparar con la que “tiene” la Naturaleza? Miremos un poco por ahí, y, después de admirar algunas muestras de lo que la Naturaleza puede hacer, podremos opinar.

 

 

Leer más

¡Es tan bello el Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La NASA proporciona elementos para esta imagen de la Nebulosa Carina, una  región de formación de estrellas en el espacio profundo con gas | Imagen  Premium generada con IAMontaña Mística De La Nebulosa Carina Foto de stock y más banco de imágenes  de Creación - Creación, Columna arquitectónica, Telescopio Hubble - iStockHST: Pilar de Gas en la Nebulosa de Carina

Podríamos mostrar mil imágenes distintas de la Nebulosa Carina

Existen objetos en el Universo que, por mucho que lo podamos mirar, nunca dejan de sorprendernos ni dejan de  producir en nosotros la sensación de grandeza que en cualquiera de sus regiones nos podemos encontrar. Ahí, en la imagen de arriba,  podemos contemplar a la nebulosa Carina, en realidad una constelación austral que forma parte de aquella antigua conocida con el nombre de el Navío Argo y que fue troceada por los expertos de la Unión Astronómica Internacional en las cuatro partes que ahora son conocidas como: Vela, Puppis Popa), Pyxis(Compás o Brújula) ( y la propia Carina (Quilla).

 

File:Navío Argos.png - Wikimedia Commons

 

Aquí, en la Nebulosa Carina, está la segunda estrella más brillante del cielo, Canopo y, también una de las estrellas más masivas conocidas, Eta Carinae que está pendiente de un hilo que, de un momento a otro se pueda convertir en una supernova y explotar para dar más riqueza al entorno con nuevos materiales complejos que se mezclarían con el ya existente en el lugar en el que, de pronto, aparecería un agujero negro que distorsionaría toda la zona a su alrededor.

 

Canopus (estrella) - Wikipedia, la enciclopedia libre

 

La Imagen captada por el Hubble  capturó esta nebulosa de ondulantes formas de gas interestelar frío y polvo emergiendo de una tempestuosa región estelar situada en la Nebulosa Carina, a 7500 años luz de distancia. Esta columna de polvo y gas sirve como semillero de nuevas estrellas y está repleta de actividad asociada a la formación estelar.

 

La Nebulosa Eta Carinae, NGC3372 | NOIRLab

La Nebulosa Eta Carinae

 

La fascinante historia de 'Eta Carinae', la estrella que explotó en 1838 y  se convirtió en la segunda más brillante de la galaxia

A mediados del siglo XIX, los navegantes de los mares del sur se guiaban gracias a Eta Carinae, una estrella relativamente joven que se estima tiene entre dos y tres millones de años. En 1838, Eta Carinae estalló de una forma tan impresionante que a este evento se le conoce como “La Gran Erupción“, lo que hizo que durante algunas décadas se convirtiera en el segundo objeto más brillante del cielo nocturno.

La Gran Nebulosa de Carina, situada en la Constelación de la Quilla, a unos 7.500 años luz de nuestro Sistema Solar, tiene en su interior varias estrellas supermasivas y una de ellas es Eta Carinae. La masa de esta impresionante estrella se calcula que oscila entre 100 y 150 veces la masa solar, mientras que su luminosidad es de casi cuatro millones de veces la del Sol.

Se pueden apreciar a la estrella Eta Carinæ y los restos de erupciones antiguas que forman la Nebulosa del Homúnculo alrededor de la estrella. La nebulosa fue creada por una erupción de Eta Car cuya luz alcanzó la tierra en 1843. Eta Car aparece como un parche blanco en el centro de la imagen, donde los dos lóbulos de la nebulosa Homúnculo convergen. Como tiene una masa de 100/150 masas solares, la única manera de que su propia radiación no la destruya es eyectando material al espacio para descongestionarse y seguir viviendo, aunque se piensa que, en cualquier momento, podría producirse el suceso.

 

 

Epsilon Carinae

              Épsilon Carinae e Ípsilon Carinae son dos estrellas dobles

Canopo la segunda estrella más brillante del firmamento es una supergigante  blanco-amarilla a 310 años-luz de nosotros. Aunque se trata de una estrella del hemisferio sur  puede observarse desde la costa africana del Mar Mediterráneo. Como la Vía Láctea atraviesa Carina,  la constelación contiene varios cúmulos abiertos como NGC 2516 y IC 2602 que es más conocido como “Las Pléyades del Sur”  que abajo podéis contemplar.

 

 

Espectaculares es sin duda el cúmulo abierto IC 2602 localizado en la constelación de Carina, grupo de unas sesenta estrellas en donde θ Carinae es la más brillante. Popularmente conocido como las “Pléyades del Sur”, ya que los primeros europeos en verlo por aquí, les recordaba a Las Pléyades del hemisferio boreal, en Tauro. También es conocido como el cúmulo de theta Carinae, Cr 229, Mel 102. El mismo fue descubierto por Abbe Lacalle el 3 de Marzo de 1752 desde Sudáfrica. También en Carina se localiza una de las cefeidas más prominentes, l Carinae o HD 84810, que muestra una oscilación en su brillo desde magnitud 3,28 a 4,18 a lo largo de un período de 35,54 días.

Estrellas principales situadas en el lugar:

 

Canopus - α Carinae (alpha Carinae) - Star in Carina | TheSkyLive.com

 

 

 

 

Imagen de Mira en luz ultravioleta, en donde se aprecia el rastro que deja la estrella. La variable Mira es una estrella variable pulsante caracterizada por un color rojo intenso, un período de pulsación de más de 100 días, y una amplitud de más de una magnitud aparente. Son gigantes rojas en estados muy avanzados de su evolución estelar  situadas en la rama asintótica gigante en el Diagrama de H-R, que en el transcurso de unos millones de años expulsarán sus capas exteriores creando una nebulosa planetaria, quedando el núcleo remanente como una enana blanca. Las últimas observaciones han puesto de manifiesto que una gran parte de las variables Mira no tienen forma esférica.

 

Mira, la variable pulsante - Cielos BorealesLas estrellas variables — Astrobitácora

La variable Mira es una estrella variable pulsante caracterizada por un color rojo intenso

Sigue una lista interminable de gigantes rojas, estrellas azules, estrellas binarias, irregulares, Cefeidas, sistemas masivos binarios, cúmulos, supergigantes azules como Sher 25 que se piensa está a punto de explotar como supernova, enanas blancas de ingente fulgor ultravioleta ionizante… Todo eso y mucho más está presente en la Nebulosa Carina que podemos mirar y quedar embelezados de su belleza y que, sin embargo, no llegamos a alcanzar a comprender que, en esa ingente cantidad de gases y polvo están presentes objetos de extrema energía y de belleza sin par.

 

File:Eta Carinae Nebula 1.jpg

 La Nebulosa Carina se puede contemplar desde distintas perspectivas que nos llevan a regiones de nubes moleculares en las que se fraguan las moléculas que hacen posible el devenir de la vida. No pocas veces han quedado asombrados los Astrofísicos al observar moléculas de alcohol y de azúcares y proteínas, aminoácidos y otros elementos complejos necesarios para la formación del ADN.

Molécula de hidrógeno según la TEVMOLECULAS DE CARBON by Miguel Angel Velez Palacio - Issuu

Ilustración De La Molécula De Oxígeno En El Fondo Blanco Aislado Fotos,  retratos, imágenes y fotografía de archivo libres de derecho. Image 31529545Hay la mayor cantidad de nitrógeno en el aire, ¿por qué los humanos pueden  sobrevivir solo absorbiendo oxígeno? - Noticias

Moléculas esenciales para la Vida

Hidrógeno, oxígeno, carbono, calcio, azufre, nitrógeno y fósforo son continuamente irradiados por iones, que pueden generar moléculas orgánicas evolucionando en moléculas más grandes y complejas las cuales resultan en la formación de aminoácidos y otros compuestos que más tarde, en el entorno adecuado…

Podemos concluir diciendo que, en la Nebulosa Carina, está presente la magia que sola sabe hacer el universo. Convertir en estrellas ingentes masas de gas y polvo no resultaría fácil para un mago corriente. Por otra parte, la variedad de estrellas y objetos que ahí se han formado, nos lleva a la convicción de que, un gran grupo de astrónomos, se podrían pasar la vida tan ricamente instalados en las cercanías de la Nebulosa para estudiar los sucesos que allí ocurren para poder aprender, como se forman las estrellas y los mundos y, también, los “ladrillos de la vida”.

Emilio Silvera V.

El Futuro se acerca, pero… ¡No estaremos aquí!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Poco a poco avanzamos hacia las estrellas, allí está nuestro origen, y, hacia allí volvemos