domingo, 13 de octubre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Final de la Libreta, Los misterios de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me encantaría saber lo que es la consciencia y cómo se manifiesta, qué caminos recorre, en qué consiste realmente y de qué mecanismos se vale, y cómo es diferente en cada individuo. Siempre hay matices distintos en cada persona, aún cuando finalmente puedan converger y estar de acuerdo

 

Qué es la conciencia y la consciencia? Diferencias

A pesar del largo recorrido de la filosofía y de las muchas aportaciones realizadas desde disciplinas capitales como las matemáticas (Riemann, Ramanujan, Perelman y otros), la física (Lorentz, Planck, Einstein, etc.) y otras, la mente sigue siendo un misterio y su potencial desconocido.

 

Descubren la sede de la consciencia en el cerebro - Bolsamanía.com

No me cabe la menor duda de que seremos capaces de plasmar en realidad todo aquello en lo que, racionalmente, pensemos. Así se define a un genio: alguien capaz de plasmar en realidad sus pensamientos. A eso llegaremos cuando, habiendo prescindido de la rémora física de nuestros cuerpos, nos transformemos en pura energía, en pura luz. Mientras tanto, tendremos que continuar soportando nuestras debilidades, las mezquindades y maldades de algunos, las ilusiones propias y, por qué no decirlo, también las bondades de algunos – que de todo hay – para que en ese precario equilibrio continuemos buscando. Lo malo de todo esto es que la mayor parte de la carga la llevan muy pocos; el resto, si pudiéramos leer dentro de sus mentes, sólo estaría escrita la palabra yo.

 

Qué significa la conciencia individual – Desarrollo Personal

Conciencia individual: se refiere a la conciencia de uno mismo y de cómo el entorno lo puede perjudicar o favorecer. Se establece lo que es bueno y malo para uno mismo. El ejercicio acertado de esta función mental se llama instinto de supervivencia

Pero bueno, no pierdo la esperanza. La mente humana es subliminal, y aunque ahora mismo sea capaz de lo mejor y de lo peor, pienso que algún día, ya evolucionada, esté en ese estadio final al que antes de refería. Ese estadio en el que de verdad prevalezca el bien común por encima del particular. Mientras que eso llegue tendremos que soportar situaciones injustas e incluso inhumanas dentro de una sociedad que se llama a sí misma culta y avanzada.

Leer más

¿Increíble? Y, sin embargo… Cierto

Autor por Emilio Silvera    ~    Archivo Clasificado en Los misterios del Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

el mundo de la literatura: la literatura fantástica

Redes de neuronas, misterio para los estudiosos del cerebro ...

 

El Tiempo como la Luz, corre y corre inalcanzable, y, de la misma manera, dentro de nuestros cerebros, se producen conexiones sin fin mediante ráfagas luminosas que están produciendo ideas y pensamientos

 

Cuál es la imposibilidad física de alcanzar la velocidad de la luz? - Quora
¡Nos falta Tiempo! ¿Cómo podríamos burlar (que no superar) la velocidad de la luz?
La materia perdida del Universo estaría a 400 millones de años luz de la TierraMateria oscura | HipertextualEl cielo podría estar lleno de agujeros blancos...o no
Recreación Artística de ·WHIM en la pared del escultor. Fuente: NASA
 
Burbuja Local - Wikipedia, la enciclopedia libreLa burbuja de 1.000 años luz que rodea al Sol es la cuna de las estrellas  cercanas
Con la ayuda de un modelo en 3D de nuestro vecindario galáctico, astrofísicos de EE UU y Europa han demostrado que una serie de explosiones de supernova han conducido a la creación de la Burbuja Local, en cuya superficie, situada a unos 500 años luz, se forman todas las estrellas jóvenes más próximas a nosotros.
Ya se sabe la cantidad precisa de materia en el Universo

Es mucho lo que se ha especulado con la masa que contiene el Universo, a lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que contiene y de lo que dependería la clase de Universo en el que vivimos, eso que llaman Densidad Crítica. Dado que en este apartado la ignorancia es grande, han tenido que recurrir a la “materia oscura” que sería una perfecta solución al problema. Sin embargo, como no la podemos ver, dicen que no emite radiación y sólo Gravedad se desprende de ella.

 

Playa de Las CatedralesNiebla en Ribadeo - La playa de las catedrales - Con La Mochila

Sioux Falls South Dakota United Indica Paisajes Foto de archivo ...Archivan la investigación sobre la muerte de una joven en As Catedrais

 

La Naturaleza hace cosas que son difíciles de explicar. Cómo se pueden formar estructuras que parecen hechas por el hombre y, sin embargo, es la obra de la Naturaleza la única causante de ellas. Tanto en nuestro mundo como repartidos por todas los rincones del Universo, se pueden encontrar fenómenos que, como el que arriba podemos contemplar, nos llenan de asombro.

 

hermoso

 

Es una de las nebulosas más brillantes que existen Está situada a 76 años luz de la Tierra, y posee un diámetro aproximado de 24 años luz. El material que la conforma se va constituyendo en arabescas figuras formadas por el empuje de los vientos solares provenientes de jóvenes estrellas que radían en el ultravioleta ionizando el material interestelar circundante.

 

hermoso
La Galaxia del Molinete (también conocida como Messier 101 o NGC 5457) es una galaxia espiral a 25 millones de años-luz  (8 Megaparsecs) en la Constelación Osa Mayor. Es una de las galaxias más grandes existentes en la vecindad de la Vía Láctea,  con un diámetro de más del doble que ella, y se caracteriza tanto por su riqueza en gas para formar nuevas estrellas cómo por su elevado número de regiones HII  (más de 3000, algunas tan grandes y brillantes que tienen número NGC propio y que han sido estudiadas por el Telescopio Espacio Hubble, mostrando la presencia de súper cúmulos estelares  al menos en algunas de ellas) y de cúmulos estelares jóvenes (también estudiados con dicho telescopio), lo que apunta a una elevada tasa de formación estelar.

 

La forma de las alas del ángel se deben a una estrella masiva, que debido a su gran actividad expulsa hacia fuera dos lóbulos gemelos de gas muy caliente de color azul brillante. Además posee un anillo de polvo y gas a su alrededor con la apariencia de un cinturón que se expande y le brinda la forma de un “reloj de arena”.

Gracias a las nítidas imágenes obtenidas en febrero de 2011 por el Hubble,  se puede observar que la tenue luz que emana de la estrella central se refleja en las partículas de polvo, iluminando su entorno y permitiendo observar las ondas de choque de los gases a medida que interactúan con el medio interestelar más frío.

 

Sharpless 2-106 (Sh2-106 or S106... - Science of the Universe | Facebook

 

Sharpless 2-106, Sh2-106, S106 o más popularmente conocida como ángel de nieve cósmico, es una región de formación estelar bipolar cuya forma da la apariencia de un ángel celestial con sus “alas” desplegadas de aproximadamente 2 años luz de extensión. Se encuentra a unos 2 000 años-luz  de la Tierra, en un sector relativamente aislado de la Vía Láctea, en la región HII de la Constelación del Cisne.

 

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las briznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconocidas y misteriosas.

 

 

Comparando las dos imágenes, aunque sean tan distintas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

 

 

La imagen  de arriba es otra representación artística de un Quásar, que visto desde tan lejos tiene una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferentes a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

 

Increíble? Y, sin embargo… Cierto : Blog de Emilio Silvera V.Qué son los cuásares?

Diferencias entre cuásar, púlsar y estrella de neutrones - YouTubeNeoFronteras » Actualidad astronómica: el kiosco del astrónomo ...

  El Hubble por primera vez ha captado un Quásar expulsando materia a gran velocidad

Lo asombroso de los quásares está en una pregunta  que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

 

Noticias de Agujeros Negros - ABC.es

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

El Telescopio Espacial Chandra Observa las Estrellas más ...

             Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

 

Qué son los quásares? — AstrobitácoraQué son los quásares? — Astrobitácora

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiendo, quásares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

 

Maravillas del universo - infografía interactivacosmos: Las maravillas del universo.

Las 7 maravillas del Sistema Solar: Datos desconocidos, pero que ...2400 años en búsqueda del átomo | Rincón EducativoAtoms Atomos GIF - Atoms Atomos Quantum - Descubre & Comparte GIFs

 

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber. El Universo es una burbuja multicolor de sorprendentes maravillas donde los ciclos se repiten y las formas nacen y mueren para volver a surgir.

 

La fascinante historia de 'Eta Carinae', la estrella que explotó en 1838 y  se convirtió en la segunda más brillante de la galaxia

La Nebulosa del Homúnculo del sistema de La estrella Eta Carinae

Eta Carinae es una estrella del tipo variable luminosa azul hiper-masiva, situada en la Constelación de la Quilla.  Su masa, se estima que oscila entre 100 y 150 veces la masa solar (se sabe que cuando una estrella sobrepasa las 120 masas solares, es propensa a que su propia radiación la pueda destruir, precisamente por eso eso, àra evitarlo, la estrella (que parece que piensa), eyecta material al Espacio Interestelar.

 

Álex Riveiro on Twitter: "De hecho, lo más probable es que la ...

Eta Carinae, eyecta continuamente material al espacio para evitar su muerte y descongestionarse)  lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia.  Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol; debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja  del espectro,  lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.

Eta Carinae es una estrella muy joven, con una edad entre los 2 y los 3 millones de años, y se encuentra situada en NGC 3372,  también llamada la Gran Nebulosa de Carina o simplemente Nebulosa de Carina. Dicha nebulosa contiene varias estrellas supermasivas.

 

El Hubble captó una espectacular nebulosa con forma de guerrero espacial |  TNEl-hubble-celebra-su-201-aniversario-con-un-detalle-espectacular-de-la- nebula-carina

Nosotros (al menos en esta parte del Universo), somos observadores de todas estas maravillas que, tanto lejos de nosotros como muy cerca, nos asombran cada día y nos hablan de la magia que la Naturaleza que, con toda “naturalidad”,  puede desarrollar para que nos podamos maravillar.
Emilio SilveraV.

¿Dónde estamos? ¿Hacia dónde vamos? ¿De dónde venimos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Como se forma la lluvia acida? - Cuidemos Nuestro Planeta!La Corte Suprema de los EE.UU prohíbe patentar ADN humano. | ¿De ...La Vida! ¿Sabremos alguna vez cómo surgió en el Universo? : Blog de Emilio  Silvera V.

Parece que el Universo sabía que íbamos a venir

Reflexión de la semana: “El árbol de la vida sigue su curso” | El ...

Otros reinos se buscaron la manera de replicarse

 

El Universo y Nosotros! ¿Sabremos algún día la verdadera relación? : Blog  de Emilio Silvera V.Patrañas (VI): «Nuestras mentes están conectadas» – Ciencia de Sofá

Han sido muchas las puertas que han sido abiertas para descubrir detrás de cada una, un misterio tal como el comienzo y formación del universo, el descubrimiento de la existencia de las cuatro fuerzas fundamentales, de las constantes universales, el movimiento de las galaxias por la expansión del universo, el descubrimiento del núcleo en el átomo que forma la materia de la que están hechas todas las cosas, de los quarkshadrones, y leptones, las matemáticas, la física, la química, la astronomía, y también la filosofía, todo ello formando una ingente y descomunal obra que parece imposible que se llevara a cabo por unos insignificantes seres, habitantes de un insignificante planeta, que dependen para vivir de la luz y el calor de una estrella corriente a la que llamamos Sol (una estrella mediana, amarilla, de la clase G2V),  que forma parte de un conjunto de cien mil millones que conforman la Galaxia Vía Láctea que, a su vez, es una más de los más de cien mil millones que pueblan el universo.

 

Si nos comparamos, no ya con el universo entero, sino simplemente con la inmensidad de nuestra Galaxia (100.000 años luz de diámetro), somos menos que una brizna de polvo. Si nos comparamos con el universo entero… no somos nada. Y, sin embargo, nosotros tenemos la sensación, a pesar de todo, de SER, y, no precisamente nada insignificante pero…

 

Sí, necesitamos pensar, es preciso llegar más allá de los pensamientos actuales, buscar nuevos caminos

Sin embargo, en este punto debemos recapacitar un poco, reconocer con humildad la importancia que realmente tenemos en el universo y seguidamente, reconocer también los enormes logros conseguidos desde que, hace escasamente unos doscientos mil años, un animal se levantó para andar erguido y comenzar a pensar en otras formas de vivir, ideando rústicas herramientas para la caza, haciendo fuego y construyendo refugios.

 

Todavía hoy nos encontramos remanentes de aquellos
https://youtu.be/bjZrc_wCkT4

El lenguaje mediante sonidos guturales vino a cambiarlo todo. Allí empezó el entendimiento inteligente de seres que de animales irracionales, evolucionaron hasta llegar a pensar por sí mismos, tener conciencia de SER y preguntarse de dónde venía y hacía dónde caminaba. Miraban hacia el cielo estrellado y se hacían preguntas sobre aquellos puntitos brillantes del cielo. Ese fue, sin dudarlo, el comienzo de la Astronomía.

Ya quedó escrito en alguna parte anterior de esta libreta, el pensamiento del filósofo científico Karl Popper que decía:

”Nuestros conocimientos son limitados, pero nuestra ignorancia es infinita…”.

Chess zhor 26.png
Chess zver 26.png a8 b8 c8 d8 e8 f8 g8 h8 Chess zver 26.png
a7 b7 c7 d7 e7 f7 g7 h7
a6 b6 c6 d6 e6 f6 g6 h6
a5 b5 c5 d5 e5 f5 g5 h5
a4 b4 c4 d4 e4 f4 g4 h4
a3 b3 c3 d3 e3 f3 g3 h3
a2 b2 c2 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g1 h1
Chess zhor 26.png
     Un tablero de ajedrez vacío

“Si se colocase sobre un tablero de Ajedrez (lo suficientemente grande) un grano de trigo en el primer casillero, dos en el segundo, cuatro en el tercero y así sucesivamente, doblando la cantidad de granos en cada casilla, ¿Cuántos granos de trigo  habría en el tablero al final?”

 

 18 \; 446 \; 744 \; 073 \; 709 \; 551 \; 615
Un poco más de 18 trillones en la escala numérica larga, lo que es una cifra mucho más alta de lo que la mayoría de la gente esperaría de forma intuitiva.

Este problema puede ser usado para explicar el funcionamiento de los exponentes, además del muy rápido crecimiento que en general caracteriza a las series exponencialesa y de las secuencias geométricas.

Sin embargo, aunque es verdad que existen millones de preguntas que no sabemos contestar, también lo es que nuestros conocimientos crecen de manera exponencial. Cada vez sabemos más en menor espacio de Tiempo.

 

Nadie puede negar que en los últimos doscientos años hayamos avanzado más que en los 10.000 años anteriores. Claro está que nos hemos aprovechado de las experiencias e inventos de los que nos precedieron. Aprendimos de los errores (no siempre) y mejoramos sus descubrimientos que fueron puntos de apoyo que hicieron más fácil el trabajo. Igualmente, los que nos seguirán se encontrarán con buenos puntos de partida para seguir avanzando. Sobre todo, en física y astronomía, en esos ámbitos de lo pequeño y lo grande, tendrán la ventaja de contar con la mecánica cuántica y la relatividad, ya que, lo de la teoría de cuerdas y otros que se vislumbran como ciertas… van para largo y, como han dido algunos, son teorías del futuro que se adelantaron a su tiempo, de hecho, no estamos preparados ni para comprobarlas de manera experimental. Pero los nuevos conocimientos van llegando… sin pausa.

 

De esta manera, cada vez se avanza más en menos tiempo. El mundo cambia a nuestro alrededor y como somos parte del cambio, no lo percibimos en toda su extensión y grandeza pero, sin que nos demos cuenta, estamos entrando en otro mundo, en una nueva Sociedad, una manera nueva de vivir.

 

Primeras formas de vida conocidas - Wikipedia, la enciclopedia libre

Hemos podido saber que en un principio, hace varios miles de millones de años (4.000), las condiciones de la Tierra, la composición enrarecida de su atmósfera, la formación de los océanos y la composición primigenia de sus aguas con abundantes chimeneas marinas de volcanes submarinos que arrojaban hidrocarburos y gases de metano, así como la proliferación de enormes tormentas y caída de rayos, todo ello acompañado de que por aquel entonces la capa de ozono que ahora nos protege de la radiación cósmica no existía, lo cual provocaba la intensa lluvia de partículas ultravioletas y rayos gamma que de manera continuada bombardeaban las aguas superficiales del planeta, además del territorio formado por la tierra seca.

 

Todo ello dio lugar a que existieran unas condiciones especiales que finalmente se tradujeron en la formación de la primera célula viva capaz de reproducirse por sí misma, a partir de la materia “inerte”. ¡Un verdadero milagro!, que evolucionó y a lo largo del tiempo nos trajo a nosotros, seres engreídos que se dan más importancia de lo que en realidad tienen. Siempre expreso estas comparaciones en relación al universo, ya que si nos ceñimos al ámbito planetario terrestre, la humanidad tiene una importancia de 1ª magnitud.

En realidad, si no ocurre ninguna desgracia planetaria, o es el mismo ser humano el que pone los medios para su auto-eliminación (contaminación, guerras, etc), será muy difícil parar su infinita ambición por saber cosas nuevas, su insaciable curiosidad lo empuja un paso más cada vez. Los problemas agudizan el ingenio y como ha venido sucediendo, el trabajo que unos empiezan es seguido por los que vienen detrás y, en ese sentido, se podría decir que somos una especie inmortal; unos trabajaron para ceder su fruto a otros que a su vez repiten el ciclo indefinidamente. Una especie con tales características es difícil de vencer y tiene pocos problemas que no pueda resolver… a la larga, con mucho tiempo por delante.

 

Esta especie, la nuestra, es un auténtico privilegio en el inmenso universo que nos ha situado en la galaxia Vía Láctea que, junto con su vecina Andrómeda es una de las treinta galaxias que aproximadamente componen un pequeño conjunto conocido como el Grupo Local. La situación del planeta Tierra no es nada privilegiada, está situado al borde de uno de los brazos espirales a 30.000 años luz del centro galáctico, exactamente en la periferia. Precisamente esta situación es la que hace posible que la vida surgiera en nuestro planeta que, de haber estado en el centro galáctico, seguramente, habría sido diferente.

 

La Vía Láctea - Nueva Escuela Mexicana Digital

El Sistema solar está en el interior del Brazo de Orión, a 27.000 años luz del Centro galáctico, zona tranquila

Los problemas a los que antes me refería, no sé si todos ellos, pero los que tengan solución será de la mano de las matemáticas y de la física, las ramas de la ciencia que son la base de todas los demás. Las Ciencia es un gran árbol en el que, el tronco es la física, las ramas son la Química, la Biología, y otras disciplinas. Pero, ¿Y las matemáticas? Bueno, las matemáticas son las raíces, sin ellas la ciencia, no podría existir.

 

 

De lo que no puede haber duda alguna es sobre el destino final del universo, de una u otra forma quedará destruido. Lo mismo será si estamos en un universo abierto que se expansionará eternamente, como si estamos en un universo cerrado que se contraerá sobre sí mismo. En el primero reinará el frío del cero absoluto, todo quedara congelado y muerto. En el segundo será el fuego el que en una enorme bola de feroz temperatura lo arrasará todo.  Tanto en uno como en toro caso, el resultado será el mismo: ausencia de vida.

 

La entropía no deja de hacer su trabajo en el sistema cerrad

o que es el universo que irremediablemente verá crecer el desorden y disminuir la energía; es la ley de la naturaleza, y contra dicha fuerza nada podemos hacer, es imparable y lo mismo que no podemos parar el tiempo, tampoco podemos parar los acontecimientos naturales que el paso del mismo conlleva. Las cosas se deterioran, nosotros envejecemos y los terrenos fértiles se erosionan y desertizan. Ricos ecosistemas, con el paso del tiempo, se convierten en parajes yermos donde la vida desaparece. Regiones que ocuparon grandes océanos quedaran secas y otras, serán inundadas por las aguas. Es el mundo cambiante y dinámico que tenemos en el que nada permanece por los siglos o milenios.

 

El universo tiene 13.500.000.000 años, un tiempo considerable si lo comparamos con los míseros ochenta años que podemos vivir nosotros. Sin embargo, nunca pensamos en ello, no comparamos la brevedad de nuestras vidas con tal inmensidad. Para todos nosotros, esa insignificante fracción de tiempo es en realidad enorme. Durante ese tiempo transcurren todas nuestras vidas y año tras año se suceden los acontecimientos que, ya de mayores, pasan por nuestros recuerdos: nuestra niñez, aquellas salidas al campo con los padres, los amigos de la infancia, el colegio, los deportes, el estudio o el trabajo temprano, la novia, la boda, los hijos, verlos crecer, la lucha de llevarlos adelante y… sin que nos demos cuenta, estamos situados a las puertas del irás y no volveras.

 

Todo transcurre… demasiado pronto y, casi no nos deja tiempo para… ¡hacer tantas cosas!

De esa manera, en una fracción del tiempo del universo, para nuestro ámbito particular han pasado muchísimas cosas; hemos vivido muchísimas experiencias, hemos aprendido, hemos tenido efímeros momentos de felicidad y también momentos de dolor, nos hemos sacrificado por conseguir cosas para nuestros hijos, cuando parece que todo está logrado y hemos alcanzado la meta…. nos tenemos que marchar.

Algunos pensadores nos dicen que el tiempo no existe, que es una abstracción de la mente,  y que sólo se trata de una ilusión de nuestros sentidos, el pasado, el presente y el futuro es sólo una ilusión de una misma cosa que nosotros llamamos tiempo. Sin embargo, en nuestro fuero interno, lo podemos catalogar como un gran tesoro, algo que necesitamos y del que nadie quiere salir. Todos queremos continuar dentro del ámbito del Tiempo, allí donde ocurren todas las cosas y, ser testigos de lo que pasa y también, de lo que vendrá.

 

 ¡Siempre nos faltará tiempo!

Escribiendo esta página, miro hacia arriba y veo lo que escribí hace un momento, miro mis dedos en movimiento y veo lo que escribo en este preciso momento presente… pero sigo mirando y ante mis propios ojos veo avanzar la fila de letras sobre la pantalla y en fracciones de segundo lo que fue presente es ya pasado y mis dedos siguen tecleando en busca del futuro inmediato que se hará presente y pasará a ser pasado…otra vez. Mientras que, la pantalla que está en blanca inmaculado, esa es, la que esconde lo que el futuro será, lo que nos dirá. Toda vez que, ¡el futuro no está escrito! Si de nosotros depende. Sin embargo, si el futuro al que nos referimos es el del Universo… Está bien determinado cual será.

Emilio Silvera V.

¿La Mente Humana? ¡Un prodigio de la Naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosas curiosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Tiempo de Planck
Téngase en cuenta que este es un tiempo característico, por lo que su orden de magnitud es lo que debe tenerse en cuenta. A veces se define con la longitud de onda de arriba dividida por 2π, así que no se debe preocupar por el número de dígitos significativos

 

Antes del tiempo clasificado como tiepo de Planck, 10-43 segundos, todas las cuatro fuerzas fundamentales se presumía que estaban unificadas en una sola fuerza. Toda la materia, energía, espacio y tiempo se suponía que se dispararon hacia el exterior desde una singularidad original. No se sabe nada de este período.

Era del Tiempo de Planck

En la era de alrededor del tiempo de Planck 1, 10-43 segundos, se proyecta por el modelado actual de las fuerzas fundamentales fuerzas, que la fuerza de la gravedad comienza a diferenciarse de las otras tres fuerzas. Esta es la primera de las roturas espontáneas de la simetría, que desembocan en los cuatro tipos de interacciones observadas en el universo actual.

Las Unidades de Planck

Tampoco es que sepamos mucho acerca de períodos posteriores, es sólo que no tenemos verdaderos modelos coherentes de lo que podría suceder bajo tales condiciones. La unificación electrodébil ha sido apoyada por el descubrimiento de las patículas W y Z, y se puede utilizar como una plataforma de debate sobre el siguiente paso, la Teoría de la Gran Unificación (GUT). La unificación final ha sido llamada “teoría de la super unificación”, y cada vez más popular es la denominada “Teoría del Todo” (TOE). Sin embargo, “las teorías del todo” están separadas por dos grandes saltos, más allá de los experimentos que se pueda desear hacer en la Tierra.

Max Planck - Wikipedia, la enciclopedia libre

           El joven Planck
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza para entender esos números tan endiabladamente pequeños.

El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 t_P = \sqrt{\frac{\hbar G}{c^5}} \; \approx \quad 5,39106(32) \cdot 10^{-44} segundos

donde:

\hbar es la constante de Planck reducida (conocida también como la constante de Dirac). 
G es la constante de Gravitación Universal;  c es la velocidad de la luz en el vacío.

Los números entre paréntesis muestran la desviación estándar.

En este ámbito hablamos de las cosas muy pequeñas, las que no se ven

El Tiempo de Planck es:

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

 

                   ¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieron!

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Bari-céntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc.  Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal.  Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

 

           … Y que el mismo tiempo suele borrar

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.

Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella.  Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa.  Queda comprimida hasta tal nivel que llega un momento que desaparece,  para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio.  A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.

 

       En la singularidad no se distorsiona, se para

El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad.  El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico.  Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala.  Estas regiones son a menudo esféricas.  El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea.  La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble.  Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.

 

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo.  Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

 

Almacenes inteligentes: optimizando la logística con tecnología avanzada

“Magia es cualquier tecnología suficientemente avanzada”

Arthur C. Clarke

Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

 

Espacio curvo de Riemann (II de III)Superficie de Riemann - Wikipedia, la enciclopedia libre

 

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.  En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría deca-dimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

 

 

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

La Geometría de los espacios curvos de Riemann que dejó atrás a Euclides con sus líneas y puntos

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Legendre: Sobre la teoría de los números

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

 

                                                  Hannover, Alemania

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

 

Dimensión - Wikipedia, la enciclopedia libre

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

 

El Hombre que visitó la cuarta dimensión

Hemos querido ver la cuarta dimensión pero… No deja ver. Sin embargo, su transcurrir se siente. En ella está la Entropía.

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

 

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

 

Fig.: Conceptos esenciales de la geometría riemanniana ilustrados. |  Download Scientific Diagram

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

 

 

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.)

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de super-gravedad, supersimetría y, finalmente las supercuerdas.

 

 

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

Emilio Silvera V.

El Universo es dinámico y, ¡misterioso!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Big Bang GIFs | Tenor

 

“El poeta romano Lucrecio expresó en su primer libro De Rerum Natura que “ninguna cosa nace de la nada ; no puede hacerlo la divina esencia.” Y, siendo así (que lo es, tenemos que pensar que el surgió surgió con una fluctuación del vacío que estaba lleno a rebosar.

En no pocas ocasiones uno se ha parado a pensar en cómo pudo surgir el Universo a partir de la “nada”. Si surgió es porque había. Y, desde luego, todo está directamente relacionado con eso que se conoce por fluctuaciones, esas desviaciones aleatorias en el valor de las cosas sobre su valor medio. No hay que perder de vista los sistemas descritos por la mecánica cuántica, en ellos están bien definidas esas fluctuaciones que, en esa infinitesimal región se llaman “fluctuaciones cuánticas” y, tienen mucho que ver con el Principio de Incertidumbre de Heisenberg.

 

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreLa Mecánica Cuántica: El principio de incertidumbre II

En Cualquier sistema por encima del cero absoluto se pueden presentar dichas fluctuaciones. Es necesario que tengamos en cuenta dichas fluctuaciones para poder obtener una teoría cuantitativa de de las “transiciones de fase” en tres dimensiones. Incluso se puede llegar a pensar que las “fluctuaciones cuánticas” pudieron ser las responsables de la formación de las estructuras en el universo primitivo que pudo surgir de una “Fluctuación del Vacío” que rasgando el espacio tiempo en otro lugar, produjo la opción de crear nuestro universo, o, incluso, múltiples universos conectados al principio y separados más tarde para hacerse unidades independientes de universos.

 

El Vacío de Boötes”: El hoyo más misterioso del Universo

El vacío de Boötes o el Gran Vacío1 es una gigantesca y cuasi-esférica región del  espacio, que contiene muy pocas galaxias. Se encuentra en las cercanías de la constelación de Bot Boötes, de ahí su nombre. Su centro está localizado a 700 millones de años luz de la Tierra.

Lo que vemos arriba marcado dentro de un círculo es lo que se conoce como el Gran Vacío de Boötes, uno de los mayores “vacíos conocidos de nuestro Universo.  El  Tiene unos 250 millones de años luz de diámetro (casi el 0.27% del diámetro del universo visible), o unos 236,000 Mpc en el volumen. Se considera un super-vació y sólo tiene dentro de él a unas sesenta galaxias. Fue descubierto por Robert Kirshner (1981), como parte de un estudio de corrimientos al rojo galácticos. El centro del Vacío Boötes esta a aproximadamente 700 millones de años luz de la Tierra.

En astronomía, el vacío está referido a regiones del espacio con menor contenido de Galaxias que el promedio o ninguna galaxia.  También le solemos llamar vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años-luz en exploraciones a gran escala.

 

Un fuerte campo gravitatorio puede producir fuertes fluctuaciones cuánticas del  vacío

       Sabemos que la “Nada” no existe y que, a partir de las “Fluctuaciones de vacío” nace la materia

¡Las fluctuaciones de vacío! que, al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula. Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio.  El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo momentáneamente de la energía fluctuacional tomada prestada de regiones “vecinas del espacio”, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones vecinas. Si hablamos de fluctuaciones electromagnéticas del vacío las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la Gravedad en el vacío, son gravitones virtuales.

 

 

Ni con los ojos abiertos como platos hemos podido “ver” lo que “hay” en esas “regiones vecinas” a nuestro mundo y que llamamos vacío en el que se producen fluctuaciones que hace surgir “cosas” que, de inmediato, desaparecen.  Insistimos en querer verlas para saber y no dejamos de preguntarnos… ¿Qué es lo que hay allí? ¿Vivirá en esa región la tan buscada partícula de Higgs, la “materia oscura” o las cuerdas? ¿Qué es lo que allí puede haber? En realidad sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que “los movimientos de degeneración claustrofóbicos” son para los electrones.

 

La velocidad de la Luz, ¿Será siempre un muro infranqueable? : Blog de  Emilio Silvera V.

Viaja a la velocidad de la luz, y, es inalcanzable

Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que un trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible.  Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de los neutrones, mantiene estable a la estrella de neutrones que, obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo a la estrella.

 

Gif Animados Abstractos Para BBM | BlackBerry, Android e iOS

 

 

De la misma forma, si tratamos de eliminar todas las oscilaciones electromagnéticas o gravitatorias de alguna región del espacio, nunca tendremos éxito.  Las leyes de la mecánica cuántica insisten en que siempre quedarán algunas oscilaciones aleatorias impredecibles, es decir, algunas ondas electromagnéticas y gravitatorias aleatorias e impredecibles. Estas fluctuaciones del vacío no pueden ser frenadas eliminando su energía (aunque algunos estiman que, en promedio, no contienen energía en absoluto).

Claro que, aún nadie ha podido medir de ninguna manera la cantidad real de energía que se escapa de ese supuesto “vacío”, como tampoco se ha medido la cantidad de fuerza gravitatoria que puede salir de ese mismo espacio “vacío”. Si la energía es masa y si la masa produce gravedad, entonces ¿Qué es lo que hay en ese mal llamado “espacio vacío”?

 

 

Podemos imaginar que el vacío es un depósito de energía: las partículas virtuales surgen del vacío, tomando prestada temporalmente parte de su energía. En física, lo normal es sorprenderse y leer cosas como esta:

“Así, como entramos en una nueva era para comprender el tiempo, también hemos entrado a una nueva era de comprender el espacio.  Se ha descubierto que lo que llamamos espacio vacío, el vacío, en realidad está repleto de inmensa energía potencial.  La conclusión ordinaria de considerar el espacio como la nada, el lugar donde se sitúa la materia, evidentemente se ha convertido en nuestro espacio.  Pero el vacío tiene más energía que la materia que está en ese vacío y de hecho, la materia y el vacío son una misma cosa, hay una continuidad.  Se ha descubierto que hay más energía en un centímetro cúbico de vacío que en todo el Universo manifiesto.”
La física moderna sugiere que el tiempo no avanza, es sólo una ilusión

Lo cierto es que estamos en un momento crucial de la Física, las matemáticas y la cosmología, y debemos, para poder continuar avanzando, tomar conceptos nuevos que, a partir de los que ahora manejamos, nos permitan traspasar los muros que nos están cerrando el paso para llegar a las supercuerdas, a la posible  “materia oscura” o a una “teoría cuántica de la gravedad” que, también está implícita en la teoría M.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

Claro que esto estuvo bien pero… Habrá que buscar cosas nuevas que nos lleven más allá. Llevamos más de cien años utilizando las mismas herramientas (el cuanto de Planck y la relatividad de Einstein), sería la hora de que alguien iluminado tenga esa idea que nos haga dar ese gran paso hacia la física del futuro.

 

Las 10 nuevas tecnologías que cambiarán el mundo

    Las nuevas tecnologías cambiaran el futuro

Estamos anclados, necesitamos nuevas y audaces ideas que puedan romper las cadenas “virtuales” que atan nuestras mentes a ideas del pasado que, como la relatividad y la mecánica cuántica llevan cien años predominando sobre la física. ¿No es tiempo ya de andar otros caminos que nos lleven más lejos, que nos enseñen otros horizontes? ¿Dónde están las ideas? ¿Dónde nuestra imaginación?

 

El Kybalion (en Catalá)El Kybalion

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habréis oído hablar de la energía de punto cero que permanece en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conocéis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.

 

El Efecto Casimir y algunos misterios por desvelar : Blog de Emilio Silvera  V.

                    Efecto Casimir

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío; esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

El sonido sí se transmite en el vacío

 

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor infinita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2 – 10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto. Tenemos que llegar a la conclusión de que el “vacío” y la “nada” no existen realmente. ¡Siempre hay!

“La raíz etimológica de «nada»: res nata, es contradictoria del significado actual, pues significa cosa nacida. Quizás este -para muchos- insospechado y contundente hecho justifique las tal vez permanentes e irreconciliables concepciones antagónicas, y la reificación no incurra ya en falacia.

 

Por qué surge la filosofía precisamente en Grecia? | Heródoto & Cía

 

En contraste, en la filosofía griega la idea de la nada surgió con los problemas de la negación del ser, de la conservación del ser y de la imposibilidad de afirmar la nada. En particular, Parménides creyó que del «no ser» (la nada) no se puede hablar. Epicuro y Lucrecio aseveraron que la materia no se puede crear de la nada, ni destruir a nada”. Hasta los antiguos sospechaban esa verdad.

 

             Fuí a una charla de Álvaro Rújula del CERN y, entre otras cosas decía:

“Saquemos los muebles de la habitación, apaguemos las luces y vayámonos. Sellemos el recinto, enfriemos las paredes al cero absoluto y extraigamos hasta la última molécula de aire, de modo que dentro no quede nada. ¿Nada? No, estrictamente hablando lo que hemos preparado es un volumen lleno de vacío. Y digo lleno con propiedad. Quizás el segundo más sorprendente descubrimiento de la física es que el vacío, aparentemente, no es la nada, sino una substancia. Aunque no como las otras…”

 

 

 

El hombre lleva toda la razón y es cierto que en física, la “nada” no existe y es simplemente una abstracción, un concepto, una manera de hablar para entendernos en ciertos aspectos de la conversación. Como antes he dicho por ahí arriba, existe ese algo que surge del “espacio vacío” y que conocemos como partículas virtuales, las que constantemente se crean y se destruyen y aunque no son observables de manera directa, los efectos que dichas partículas generan si que lo son. En ese sentido la física curiosamente se alinea con la etimología de la palabra nada. Todo esto, ese fenómeno que no hemos llegado a comprender nos lleva a sospechar que, ahí reside un a “identidad secreta” que nos pone delante de “la nada y el nacer”, es decir, nos pone delante del plano que nos dice que… !la nada puede ser el nacimiento! Lo que hace posible el propio proceso de nacer, o, dicho de otra manera, la “nada” podría ser la perenne potencia de ser.

 

En su forma más básica, el P. de I. establece que no se puede simultáneamente determinar la posición y el momento de una partícula, con una precisión arbitrariamente alta. Otra forma de establecerlo es, que no se puede determinar simultáneamente la energía y el tiempo de una partícula.

Principio de incertidumbre

Así, podemos llegar a la conclusión de que debido a la extraña mecánica cuántica, “la nada” se puede transformar en “algo” de manera constante. El Principio de Incertidumbre de Heisenberg señala que un sistema nunca puede tener exactamente cero energía y como la energía es masa -la relatividad especial nos demostró que son dos caras de una misma moneda-, podríamos llegar a entender el por qué, pares de partículas se pueden formar espontáneamente siempre y cuando se aniquilen rápidamente para restablecer el equilibrio.

En mecánica cuántica, la Incertidumbre nos dice que hay una compensación entre energía y tiempo: Cuanta menor energía tiene un sistema, más tiempo podrá mantenerse. Lo mismo les pasa a las estrellas supermasivas que duran mucho menos que estrellas más pequeñas que consumen menos materia de fusión nuclear. Si pensamos en todo eso, incluso podríamos llegar a la conclusión final de que, el Universo, que tiene 13.700 millones de años, ha tenido el tiempo necesario para poder formar, a partir del “vacío cuántico” estrellas y galaxias llenas de mundos y de formas de vida complejas, gracias a que, su energía en conjunto, debe ser -teniendo en cuenta su extensión- demasiado baja, o, lo necesariamente baja para que eso sea posible.

 

Los secretos de la naturaleza : maravilloso mundoCuando la cultura se esconde en la naturaleza

                 Muchas son las cosas que no sabemos ver

Claro que, a pesar de todo lo que más arriba he dicho, debemos llegar a la conclusión de que “no sabemos”, y, el hecho cierto de que, hayamos sido capaces de desvelar “algunos” secretos de la Naturaleza, no debe ser suficiente para que se nos suban esos “pequeños” triunfos a la cabeza. Newton nos descubrió que la luz del Sol o luz blanca, era el producto de la mezcla de todos los componentes coloreados, hizo pasar un rayo de luz por un prisma y, la habitación donde hacía el experimento, sus paredes, se llenaron de luciérnagas luminosas de muchos colores, el arco iris estaba allí, del rojo al violeta, descompuestos en mariposas luminosas.

File:Generaciones delamateria.png

 

Planck nos habló del cuanto de energía, h. Einstein nos dijo que la energía y la masa eran la misma cosa y que la luz marcaba el límite al que podemos enviar la información en nuestro universo. Otros descubrieron de qué estaba formada la materia y cómo se transmitían las fuerzas fundamentales del nuestro Universo. Pudimos descubrir la existencia de unas constantes universales que hacían posible un Universo como el que nos acoge. Muchos otros secretos fueron desvelados y “arrancados” de la “gruta de los tesoros” que la Naturaleza esconde.

 

La región de formación estelar S106

Todo eso es cierto, y, nuestro cerebro, una obra de la Naturaleza que lo hizo surgir a partir de la materia “inerte”, que ha podido evolucionar para desvelar todos esos secretos y, sin embargo, no debemos confundir -para nuestro propio bien-, que unos pocos conocimientos son los conocimientos. Como decía el sabio:

cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son limitados pero, mi ignorancia, es infinita“.

 

“La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

 

Ciencia y naturaleza

 

Yo creo que la Ciencia es un proceso de ir descubriendo a cada paso un orden nuevo que nos lleve a unir lo que parecía desunido. Todo en el Universo tiene una relación y, lo que pasa “aquí”, de alguna manera, influye en lo que pasará “allí”. Todo parece estar conectado por hilos invisibles de la Gravedad y el electromagnetismo que tienen alcance infinito y están presentes en todas partes, también en nosotros influyen esas y las otras fuerzas fundamentales del Universo para que seamos como somos y no de otra manera.

Emilio SilveraV.