A - B - C - D - E - F - G - H - I - J - K - L - M - N - Ñ - O - P - Q - R - S - T - U - V - W - X - Y - Z
Tensor métrico
TeorÃa
Tiempo
Tiempo de vuelta al pasado
TopologÃa
Tritio
Túnel cuántico
--- Glosario ---
Emilio Silvera Vázquez
www.emiliosilveravazquez.com
En éste glosario dirigido a personas no técnicas en fÃsica ni en matemáticas, no se puede hacer una exposición tan compleja como lo que es un tensor. Cuando nos referimos al tensor métrico estamos mencionando un aparato matemático de la geometrÃa diferencial, Tensor de Curvatura, que es una de las nociones métricas más importantes. Un tensor de curvatura es una generalización de la curvatura de Gauss a dimensiones más altas (Tensor de Riemann y Tensor de Ricci). Fue Riemann quien introdujo una manera de describir completamente la curvatura de cualquier número de dimensiones mediante una maravilla a la que hoy conocemos como Tensor de Riemann. Gracias a ésta herramienta, pudo Einstein después de 9 años de espera, formular matemáticamente su teorÃa de la relatividad general, para la que no encontraba las matemáticas adecuadas hasta que leyó la conferencia que Riemann habÃa dado 60 años antes. |
Exposición racionalmente coherente de una amplia gama de fenómenos que comúnmente se explica por una hipótesis. Las teorÃas, como he indicado en alguna parte de esta misma libreta, son también tanto epónimas como descriptivas de la materia a la que se refieren (por ejemplo, teorÃa de Einstein de la relatividad o la teorÃa de Darwin de la evolución). Hay muchas teorÃas que, aunque se siguen denominando asà (tal es el caso de las dos versiones de la teorÃa relativista), en realidad, dejaron hace mucho de ser teorÃas para convertirse en leyes, ya que todas sus predicciones han sido demostrados experimentalmente, con lo cual, subió al escalón superior (primero es hipótesis, después teorÃa y finalmente ley). |
Dimensión que distingue el pasado, el presente y el futuro. En la relatividad, se describe el tiempo como una dimensión geométrica, análoga a las dimensiones del espacio. No se puede despachar este apartado con la simple explicación anterior; el tiempo es tan complejo que se necesitarÃa un tratado para intentar explicarlo. En uno de mis recientes trabajos que, casualmente denomino en portada "Pasado, presente y futuro⦠Una ilusión llamada Tiempo", trato de explicar, bajo distintos puntos de vista, lo que es en realidad el tiempo, aunque me temo que mi capacidad no sea suficiente para desarrollar (como quisiera) un tema tan difÃcil. |
Fenómeno que, a causa de la velocidad finita de la luz, cuanto más distante está un objeto observado, tanta más antigua es la información que se recibe de él. Una galaxia situada a mil millones de años-luz, por ejemplo, es vista como era hace mil millones de años, ya que ese es el tiempo que su luz ha tardado en llegar a nosotros, asà que resulta fÃsicamente imposible el ver esa galaxia como es hoy, lo que vemos es como fue entonces, hace ahora 1.000 millones de años. En este aspecto, los astrónomos y cosmólogos son unos privilegiados; pueden viajar en el tiempo para ver estrellas y objetos estelares que, seguramente, hace miles de años que ya no existen. |
Rama de la geometrÃa que se ocupa de las propiedades de los objetos geométricos que permanecen inalteradas bajo deformaciones continuas, como el doblado o el estirado. Las técnicas matemáticas que emplean la topologÃa son de gran importancia en las teorÃas modernas de las interacciones fundamentales, como por ejemplo, la teorÃa de supercuerdas. |
De sÃmbolo T. Isótopo del hidrógeno con numero másico 3; es decir, el núcleo contiene 2 neutrones y 1 protón. Es radiactivo (vida media 12'3 años), desarrollando desintegración beta a helio-3. El tritio es usado en el etiquetado. |
Salto cuántico a través de una barrera. Efecto en el que los electrones son capaces de atravesar un túnel a través de una barrera de potencial estrecha hacia una región que estarÃa prohibida si los electrones fuesen tratados como partÃculas clásicas. El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra, surge como consecuencia de la mecánica cuántica. El efecto es usado en el diodo túnel. La desintegración alfa es un ejemplo de proceso de efecto túnel. |